Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   GIF version

Theorem isrrext 31241
Description: Express the property "𝑅 is an extension of ". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b 𝐵 = (Base‘𝑅)
isrrext.v 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
isrrext.z 𝑍 = (ℤMod‘𝑅)
Assertion
Ref Expression
isrrext (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))

Proof of Theorem isrrext
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elin 4169 . . 3 (𝑅 ∈ (NrmRing ∩ DivRing) ↔ (𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing))
21anbi1i 625 . 2 ((𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
3 fveq2 6670 . . . . . . 7 (𝑟 = 𝑅 → (ℤMod‘𝑟) = (ℤMod‘𝑅))
43eleq1d 2897 . . . . . 6 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod))
5 isrrext.z . . . . . . 7 𝑍 = (ℤMod‘𝑅)
65eleq1i 2903 . . . . . 6 (𝑍 ∈ NrmMod ↔ (ℤMod‘𝑅) ∈ NrmMod)
74, 6syl6bbr 291 . . . . 5 (𝑟 = 𝑅 → ((ℤMod‘𝑟) ∈ NrmMod ↔ 𝑍 ∈ NrmMod))
8 fveqeq2 6679 . . . . 5 (𝑟 = 𝑅 → ((chr‘𝑟) = 0 ↔ (chr‘𝑅) = 0))
97, 8anbi12d 632 . . . 4 (𝑟 = 𝑅 → (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ↔ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0)))
10 eleq1 2900 . . . . 5 (𝑟 = 𝑅 → (𝑟 ∈ CUnifSp ↔ 𝑅 ∈ CUnifSp))
11 fveq2 6670 . . . . . 6 (𝑟 = 𝑅 → (UnifSt‘𝑟) = (UnifSt‘𝑅))
12 fveq2 6670 . . . . . . . . 9 (𝑟 = 𝑅 → (dist‘𝑟) = (dist‘𝑅))
13 fveq2 6670 . . . . . . . . . . 11 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
14 isrrext.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
1513, 14syl6eqr 2874 . . . . . . . . . 10 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
1615sqxpeqd 5587 . . . . . . . . 9 (𝑟 = 𝑅 → ((Base‘𝑟) × (Base‘𝑟)) = (𝐵 × 𝐵))
1712, 16reseq12d 5854 . . . . . . . 8 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = ((dist‘𝑅) ↾ (𝐵 × 𝐵)))
18 isrrext.v . . . . . . . 8 𝐷 = ((dist‘𝑅) ↾ (𝐵 × 𝐵))
1917, 18syl6eqr 2874 . . . . . . 7 (𝑟 = 𝑅 → ((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))) = 𝐷)
2019fveq2d 6674 . . . . . 6 (𝑟 = 𝑅 → (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) = (metUnif‘𝐷))
2111, 20eqeq12d 2837 . . . . 5 (𝑟 = 𝑅 → ((UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))) ↔ (UnifSt‘𝑅) = (metUnif‘𝐷)))
2210, 21anbi12d 632 . . . 4 (𝑟 = 𝑅 → ((𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))) ↔ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
239, 22anbi12d 632 . . 3 (𝑟 = 𝑅 → ((((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟)))))) ↔ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
24 df-rrext 31240 . . 3 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
2523, 24elrab2 3683 . 2 (𝑅 ∈ ℝExt ↔ (𝑅 ∈ (NrmRing ∩ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
26 3anass 1091 . 2 (((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))) ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ ((𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷)))))
272, 25, 263bitr4i 305 1 (𝑅 ∈ ℝExt ↔ ((𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing) ∧ (𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑅 ∈ CUnifSp ∧ (UnifSt‘𝑅) = (metUnif‘𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3935   × cxp 5553  cres 5557  cfv 6355  0cc0 10537  Basecbs 16483  distcds 16574  DivRingcdr 19502  metUnifcmetu 20536  ℤModczlm 20648  chrcchr 20649  UnifStcuss 22862  CUnifSpccusp 22906  NrmRingcnrg 23189  NrmModcnlm 23190   ℝExt crrext 31235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-res 5567  df-iota 6314  df-fv 6363  df-rrext 31240
This theorem is referenced by:  rrextnrg  31242  rrextdrg  31243  rrextnlm  31244  rrextchr  31245  rrextcusp  31246  rrextust  31249  rerrext  31250  cnrrext  31251
  Copyright terms: Public domain W3C validator