MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidrideqd Structured version   Visualization version   GIF version

Theorem lidrideqd 17874
Description: If there is a left and right identity element for any binary operation (group operation) +, both identity elements are equal. Generalization of statement in [Lang] p. 3: it is sufficient that "e" is a left identity element and "e`" is a right identity element instead of both being (two-sided) identity elements. (Contributed by AV, 26-Dec-2023.)
Hypotheses
Ref Expression
lidrideqd.l (𝜑𝐿𝐵)
lidrideqd.r (𝜑𝑅𝐵)
lidrideqd.li (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
lidrideqd.ri (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
Assertion
Ref Expression
lidrideqd (𝜑𝐿 = 𝑅)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐿   𝑥,𝑅   𝑥, +
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem lidrideqd
StepHypRef Expression
1 oveq1 7156 . . . 4 (𝑥 = 𝐿 → (𝑥 + 𝑅) = (𝐿 + 𝑅))
2 id 22 . . . 4 (𝑥 = 𝐿𝑥 = 𝐿)
31, 2eqeq12d 2836 . . 3 (𝑥 = 𝐿 → ((𝑥 + 𝑅) = 𝑥 ↔ (𝐿 + 𝑅) = 𝐿))
4 lidrideqd.ri . . 3 (𝜑 → ∀𝑥𝐵 (𝑥 + 𝑅) = 𝑥)
5 lidrideqd.l . . 3 (𝜑𝐿𝐵)
63, 4, 5rspcdva 3622 . 2 (𝜑 → (𝐿 + 𝑅) = 𝐿)
7 oveq2 7157 . . . 4 (𝑥 = 𝑅 → (𝐿 + 𝑥) = (𝐿 + 𝑅))
8 id 22 . . . 4 (𝑥 = 𝑅𝑥 = 𝑅)
97, 8eqeq12d 2836 . . 3 (𝑥 = 𝑅 → ((𝐿 + 𝑥) = 𝑥 ↔ (𝐿 + 𝑅) = 𝑅))
10 lidrideqd.li . . 3 (𝜑 → ∀𝑥𝐵 (𝐿 + 𝑥) = 𝑥)
11 lidrideqd.r . . 3 (𝜑𝑅𝐵)
129, 10, 11rspcdva 3622 . 2 (𝜑 → (𝐿 + 𝑅) = 𝑅)
136, 12eqtr3d 2857 1 (𝜑𝐿 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2113  wral 3137  (class class class)co 7149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-iota 6307  df-fv 6356  df-ov 7152
This theorem is referenced by:  lidrididd  17875
  Copyright terms: Public domain W3C validator