![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mat1rhmelval | Structured version Visualization version GIF version |
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
mat1rhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
mat1rhmval.a | ⊢ 𝐴 = ({𝐸} Mat 𝑅) |
mat1rhmval.b | ⊢ 𝐵 = (Base‘𝐴) |
mat1rhmval.o | ⊢ 𝑂 = 〈𝐸, 𝐸〉 |
mat1rhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) |
Ref | Expression |
---|---|
mat1rhmelval | ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 6693 | . 2 ⊢ (𝐸(𝐹‘𝑋)𝐸) = ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) | |
2 | mat1rhmval.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑅) | |
3 | mat1rhmval.a | . . . . 5 ⊢ 𝐴 = ({𝐸} Mat 𝑅) | |
4 | mat1rhmval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
5 | mat1rhmval.o | . . . . 5 ⊢ 𝑂 = 〈𝐸, 𝐸〉 | |
6 | mat1rhmval.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ {〈𝑂, 𝑥〉}) | |
7 | 2, 3, 4, 5, 6 | mat1rhmval 20333 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = {〈𝑂, 𝑋〉}) |
8 | 7 | fveq1d 6231 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) = ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉)) |
9 | 5 | eqcomi 2660 | . . . . 5 ⊢ 〈𝐸, 𝐸〉 = 𝑂 |
10 | 9 | fveq2i 6232 | . . . 4 ⊢ ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) = ({〈𝑂, 𝑋〉}‘𝑂) |
11 | opex 4962 | . . . . . 6 ⊢ 〈𝐸, 𝐸〉 ∈ V | |
12 | 5, 11 | eqeltri 2726 | . . . . 5 ⊢ 𝑂 ∈ V |
13 | simp3 1083 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
14 | fvsng 6488 | . . . . 5 ⊢ ((𝑂 ∈ V ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) | |
15 | 12, 13, 14 | sylancr 696 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘𝑂) = 𝑋) |
16 | 10, 15 | syl5eq 2697 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ({〈𝑂, 𝑋〉}‘〈𝐸, 𝐸〉) = 𝑋) |
17 | 8, 16 | eqtrd 2685 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → ((𝐹‘𝑋)‘〈𝐸, 𝐸〉) = 𝑋) |
18 | 1, 17 | syl5eq 2697 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐸 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐸(𝐹‘𝑋)𝐸) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 Vcvv 3231 {csn 4210 〈cop 4216 ↦ cmpt 4762 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 Ringcrg 18593 Mat cmat 20261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 |
This theorem is referenced by: mat1ghm 20337 mat1mhm 20338 |
Copyright terms: Public domain | W3C validator |