MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcvf Structured version   Visualization version   GIF version

Theorem nfcvf 3007
Description: If 𝑥 and 𝑦 are distinct, then 𝑥 is not free in 𝑦. Usage of this theorem is discouraged because it depends on ax-13 2390. See nfcv 2977 for a version that replaces the distinctor with a disjoint variable condition, requiring fewer axioms. (Contributed by Mario Carneiro, 8-Oct-2016.) Avoid ax-ext 2793. (Revised by Wolf Lammen, 10-May-2023.) (New usage is discouraged.)
Assertion
Ref Expression
nfcvf (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)

Proof of Theorem nfcvf
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . 2 𝑤 ¬ ∀𝑥 𝑥 = 𝑦
2 nfv 1915 . . 3 𝑥 𝑤𝑧
3 elequ2 2129 . . 3 (𝑧 = 𝑦 → (𝑤𝑧𝑤𝑦))
42, 3dvelimnf 2475 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑤𝑦)
51, 4nfcd 2968 1 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1535  wnfc 2961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-13 2390
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-nfc 2963
This theorem is referenced by:  nfcvf2  3008  nfrald  3224  ralcom2  3363  nfreud  3372  nfrmod  3373  nfrmo  3377  nfdisj  5044  nfcvb  5277  nfriotad  7125  nfixp  8481  axextnd  10013  axrepndlem2  10015  axrepnd  10016  axunndlem1  10017  axunnd  10018  axpowndlem2  10020  axpowndlem4  10022  axregndlem2  10025  axregnd  10026  axinfndlem1  10027  axinfnd  10028  axacndlem4  10032  axacndlem5  10033  axacnd  10034  axextdist  33044  bj-nfcsym  34218
  Copyright terms: Public domain W3C validator