MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  obsocv Structured version   Visualization version   GIF version

Theorem obsocv 20853
Description: An orthonormal basis has trivial orthocomplement. (Contributed by Mario Carneiro, 23-Oct-2015.)
Hypotheses
Ref Expression
obsocv.z 0 = (0g𝑊)
obsocv.o = (ocv‘𝑊)
Assertion
Ref Expression
obsocv (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })

Proof of Theorem obsocv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . . 4 (Base‘𝑊) = (Base‘𝑊)
2 eqid 2821 . . . 4 (·𝑖𝑊) = (·𝑖𝑊)
3 eqid 2821 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2821 . . . 4 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
5 eqid 2821 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
6 obsocv.o . . . 4 = (ocv‘𝑊)
7 obsocv.z . . . 4 0 = (0g𝑊)
81, 2, 3, 4, 5, 6, 7isobs 20847 . . 3 (𝐵 ∈ (OBasis‘𝑊) ↔ (𝑊 ∈ PreHil ∧ 𝐵 ⊆ (Base‘𝑊) ∧ (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 })))
98simp3bi 1143 . 2 (𝐵 ∈ (OBasis‘𝑊) → (∀𝑥𝐵𝑦𝐵 (𝑥(·𝑖𝑊)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘𝑊)), (0g‘(Scalar‘𝑊))) ∧ ( 𝐵) = { 0 }))
109simprd 498 1 (𝐵 ∈ (OBasis‘𝑊) → ( 𝐵) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3924  ifcif 4453  {csn 4553  cfv 6341  (class class class)co 7142  Basecbs 16466  Scalarcsca 16551  ·𝑖cip 16553  0gc0g 16696  1rcur 19234  PreHilcphl 20751  ocvcocv 20787  OBasiscobs 20829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fv 6349  df-ov 7145  df-obs 20832
This theorem is referenced by:  obs2ocv  20854  obs2ss  20856
  Copyright terms: Public domain W3C validator