![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opelco2g | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997.) (Revised by Mario Carneiro, 24-Feb-2015.) |
Ref | Expression |
---|---|
opelco2g | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcog 5321 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
2 | df-br 4686 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) | |
3 | df-br 4686 | . . . 4 ⊢ (𝐴𝐷𝑥 ↔ 〈𝐴, 𝑥〉 ∈ 𝐷) | |
4 | df-br 4686 | . . . 4 ⊢ (𝑥𝐶𝐵 ↔ 〈𝑥, 𝐵〉 ∈ 𝐶) | |
5 | 3, 4 | anbi12i 733 | . . 3 ⊢ ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶)) |
6 | 5 | exbii 1814 | . 2 ⊢ (∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶)) |
7 | 1, 2, 6 | 3bitr3g 302 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(〈𝐴, 𝑥〉 ∈ 𝐷 ∧ 〈𝑥, 𝐵〉 ∈ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∃wex 1744 ∈ wcel 2030 〈cop 4216 class class class wbr 4685 ∘ ccom 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-co 5152 |
This theorem is referenced by: dfco2 5672 dmfco 6311 |
Copyright terms: Public domain | W3C validator |