![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcogw | Structured version Visualization version GIF version |
Description: Ordered pair membership in a composition. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
brcogw | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1078 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) | |
2 | breq2 4689 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐴𝐷𝑥 ↔ 𝐴𝐷𝑋)) | |
3 | breq1 4688 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑥𝐶𝐵 ↔ 𝑋𝐶𝐵)) | |
4 | 2, 3 | anbi12d 747 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵) ↔ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵))) |
5 | 4 | spcegv 3325 | . . . 4 ⊢ (𝑋 ∈ 𝑍 → ((𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) |
6 | 5 | imp 444 | . . 3 ⊢ ((𝑋 ∈ 𝑍 ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
7 | 6 | 3ad2antl3 1245 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
8 | brcog 5321 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵))) | |
9 | 8 | biimpar 501 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
10 | 1, 7, 9 | syl2an2r 893 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝑋 ∈ 𝑍) ∧ (𝐴𝐷𝑋 ∧ 𝑋𝐶𝐵)) → 𝐴(𝐶 ∘ 𝐷)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∃wex 1744 ∈ wcel 2030 class class class wbr 4685 ∘ ccom 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-co 5152 |
This theorem is referenced by: utop2nei 22101 utop3cls 22102 iunrelexpuztr 38328 frege96d 38358 frege98d 38362 |
Copyright terms: Public domain | W3C validator |