MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  otel3xp Structured version   Visualization version   GIF version

Theorem otel3xp 5592
Description: An ordered triple is an element of a doubled Cartesian product. (Contributed by Alexander van der Vekens, 26-Feb-2018.)
Assertion
Ref Expression
otel3xp ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))

Proof of Theorem otel3xp
StepHypRef Expression
1 df-ot 4569 . . . 4 𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
2 3simpa 1143 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐴𝑋𝐵𝑌))
3 opelxp 5584 . . . . . 6 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) ↔ (𝐴𝑋𝐵𝑌))
42, 3sylibr 236 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
5 simp3 1133 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝐶𝑍)
64, 5opelxpd 5586 . . . 4 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
71, 6eqeltrid 2916 . . 3 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍))
8 eleq1 2899 . . 3 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → (𝑇 ∈ ((𝑋 × 𝑌) × 𝑍) ↔ ⟨𝐴, 𝐵, 𝐶⟩ ∈ ((𝑋 × 𝑌) × 𝑍)))
97, 8syl5ibr 248 . 2 (𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ → ((𝐴𝑋𝐵𝑌𝐶𝑍) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍)))
109imp 409 1 ((𝑇 = ⟨𝐴, 𝐵, 𝐶⟩ ∧ (𝐴𝑋𝐵𝑌𝐶𝑍)) → 𝑇 ∈ ((𝑋 × 𝑌) × 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  cop 4566  cotp 4568   × cxp 5546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-ot 4569  df-opab 5122  df-xp 5554
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator