HomeHome Metamath Proof Explorer
Theorem List (p. 56 of 424)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27745)
  Hilbert Space Explorer  Hilbert Space Explorer
(27746-29270)
  Users' Mathboxes  Users' Mathboxes
(29271-42316)
 

Theorem List for Metamath Proof Explorer - 5501-5600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremasymref2 5501* Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
 
Theoremintirr 5502* Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
 
Theorembrcodir 5503* Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
 
Theoremcodir 5504* Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
 
Theoremqfto 5505* A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
 
Theoremxpidtr 5506 A square Cartesian product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
 
Theoremtrin2 5507 The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
(((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
 
Theorempoirr2 5508 A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.)
(𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
 
Theoremtrinxp 5509 The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a square Cartesian product is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
 
Theoremsoirri 5510 A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ 𝐴𝑅𝐴
 
Theoremsotri 5511 A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremson2lpi 5512 A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremsotri2 5513 A transitivity relation. (Read 𝐴𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremsotri3 5514 A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
 
Theorempoleloe 5515 Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
(𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
 
Theorempoltletr 5516 Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
 
Theoremsomin1 5517 Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
 
Theoremsomincom 5518 Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
 
Theoremsomin2 5519 Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)
 
Theoremsoltmin 5520 Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))
 
Theoremcnvopab 5521* The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
 
Theoremmptcnv 5522* The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
(𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))       (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
 
Theoremcnv0 5523 The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 4772, ax-nul 4780, ax-pr 4897. (Revised by KP, 25-Oct-2021.)
∅ = ∅
 
Theoremcnv0OLD 5524 Obsolete version of cnv0 5523 as of 25-Oct-2021. (Contributed by NM, 6-Apr-1998.) (Proof modification is discouraged.) (New usage is discouraged.)
∅ = ∅
 
Theoremcnvi 5525 The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
I = I
 
Theoremcnvun 5526 The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvdif 5527 Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvin 5528 Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremrnun 5529 Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
 
Theoremrnin 5530 The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
 
Theoremrniun 5531 The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
 
Theoremrnuni 5532* The range of a union. Part of Exercise 8 of [Enderton] p. 41. (Contributed by NM, 17-Mar-2004.) (Revised by Mario Carneiro, 29-May-2015.)
ran 𝐴 = 𝑥𝐴 ran 𝑥
 
Theoremimaundi 5533 Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
(𝐴 “ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremimaundir 5534 The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.)
((𝐴𝐵) “ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremdminss 5535 An upper bound for intersection with a domain. Theorem 40 of [Suppes] p. 66, who calls it "somewhat surprising." (Contributed by NM, 11-Aug-2004.)
(dom 𝑅𝐴) ⊆ (𝑅 “ (𝑅𝐴))
 
Theoremimainss 5536 An upper bound for intersection with an image. Theorem 41 of [Suppes] p. 66. (Contributed by NM, 11-Aug-2004.)
((𝑅𝐴) ∩ 𝐵) ⊆ (𝑅 “ (𝐴 ∩ (𝑅𝐵)))
 
Theoreminimass 5537 The image of an intersection. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝐴𝐵) “ 𝐶) ⊆ ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoreminimasn 5538 The intersection of the image of singleton. (Contributed by Thierry Arnoux, 16-Dec-2017.)
(𝐶𝑉 → ((𝐴𝐵) “ {𝐶}) = ((𝐴 “ {𝐶}) ∩ (𝐵 “ {𝐶})))
 
Theoremcnvxp 5539 The converse of a Cartesian product. Exercise 11 of [Suppes] p. 67. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴 × 𝐵) = (𝐵 × 𝐴)
 
Theoremxp0 5540 The Cartesian product with the empty set is empty. Part of Theorem 3.13(ii) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
(𝐴 × ∅) = ∅
 
Theoremxpnz 5541 The Cartesian product of nonempty classes is nonempty. (Variation of a theorem contributed by Raph Levien, 30-Jun-2006.) (Contributed by NM, 30-Jun-2006.)
((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
 
Theoremxpeq0 5542 At least one member of an empty Cartesian product is empty. (Contributed by NM, 27-Aug-2006.)
((𝐴 × 𝐵) = ∅ ↔ (𝐴 = ∅ ∨ 𝐵 = ∅))
 
Theoremxpdisj1 5543 Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
((𝐴𝐵) = ∅ → ((𝐴 × 𝐶) ∩ (𝐵 × 𝐷)) = ∅)
 
Theoremxpdisj2 5544 Cartesian products with disjoint sets are disjoint. (Contributed by NM, 13-Sep-2004.)
((𝐴𝐵) = ∅ → ((𝐶 × 𝐴) ∩ (𝐷 × 𝐵)) = ∅)
 
Theoremxpsndisj 5545 Cartesian products with two different singletons are disjoint. (Contributed by NM, 28-Jul-2004.)
(𝐵𝐷 → ((𝐴 × {𝐵}) ∩ (𝐶 × {𝐷})) = ∅)
 
Theoremdifxp 5546 Difference of Cartesian products, expressed in terms of a union of Cartesian products of differences. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 26-Jun-2014.)
((𝐶 × 𝐷) ∖ (𝐴 × 𝐵)) = (((𝐶𝐴) × 𝐷) ∪ (𝐶 × (𝐷𝐵)))
 
Theoremdifxp1 5547 Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
((𝐴𝐵) × 𝐶) = ((𝐴 × 𝐶) ∖ (𝐵 × 𝐶))
 
Theoremdifxp2 5548 Difference law for Cartesian product. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 26-Jun-2014.)
(𝐴 × (𝐵𝐶)) = ((𝐴 × 𝐵) ∖ (𝐴 × 𝐶))
 
Theoremdjudisj 5549* Disjoint unions with disjoint index sets are disjoint. (Contributed by Stefan O'Rear, 21-Nov-2014.)
((𝐴𝐵) = ∅ → ( 𝑥𝐴 ({𝑥} × 𝐶) ∩ 𝑦𝐵 ({𝑦} × 𝐷)) = ∅)
 
Theoremxpdifid 5550* The set of distinct couples in a Cartesian product. (Contributed by Thierry Arnoux, 25-May-2019.)
𝑥𝐴 ({𝑥} × (𝐵 ∖ {𝑥})) = ((𝐴 × 𝐵) ∖ I )
 
Theoremresdisj 5551 A double restriction to disjoint classes is the empty set. (Contributed by NM, 7-Oct-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝐴𝐵) = ∅ → ((𝐶𝐴) ↾ 𝐵) = ∅)
 
Theoremrnxp 5552 The range of a Cartesian product. Part of Theorem 3.13(x) of [Monk1] p. 37. (Contributed by NM, 12-Apr-2004.)
(𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
 
Theoremdmxpss 5553 The domain of a Cartesian product is a subclass of the first factor. (Contributed by NM, 19-Mar-2007.)
dom (𝐴 × 𝐵) ⊆ 𝐴
 
Theoremrnxpss 5554 The range of a Cartesian product is a subclass of the second factor. (Contributed by NM, 16-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
ran (𝐴 × 𝐵) ⊆ 𝐵
 
Theoremrnxpid 5555 The range of a square Cartesian product. (Contributed by FL, 17-May-2010.)
ran (𝐴 × 𝐴) = 𝐴
 
Theoremssxpb 5556 A Cartesian product subclass relationship is equivalent to the relationship for it components. (Contributed by NM, 17-Dec-2008.)
((𝐴 × 𝐵) ≠ ∅ → ((𝐴 × 𝐵) ⊆ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷)))
 
Theoremxp11 5557 The Cartesian product of nonempty classes is one-to-one. (Contributed by NM, 31-May-2008.)
((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) → ((𝐴 × 𝐵) = (𝐶 × 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremxpcan 5558 Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
(𝐶 ≠ ∅ → ((𝐶 × 𝐴) = (𝐶 × 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremxpcan2 5559 Cancellation law for Cartesian product. (Contributed by NM, 30-Aug-2011.)
(𝐶 ≠ ∅ → ((𝐴 × 𝐶) = (𝐵 × 𝐶) ↔ 𝐴 = 𝐵))
 
Theoremssrnres 5560 Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
(𝐵 ⊆ ran (𝐶𝐴) ↔ ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵)
 
Theoremrninxp 5561* Range of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(ran (𝐶 ∩ (𝐴 × 𝐵)) = 𝐵 ↔ ∀𝑦𝐵𝑥𝐴 𝑥𝐶𝑦)
 
Theoremdminxp 5562* Domain of the intersection with a Cartesian product. (Contributed by NM, 17-Jan-2006.)
(dom (𝐶 ∩ (𝐴 × 𝐵)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑥𝐶𝑦)
 
Theoremimainrect 5563 Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
((𝐺 ∩ (𝐴 × 𝐵)) “ 𝑌) = ((𝐺 “ (𝑌𝐴)) ∩ 𝐵)
 
Theoremxpima 5564 The image by a constant function (or other Cartesian product). (Contributed by Thierry Arnoux, 4-Feb-2017.)
((𝐴 × 𝐵) “ 𝐶) = if((𝐴𝐶) = ∅, ∅, 𝐵)
 
Theoremxpima1 5565 The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝐴𝐶) = ∅ → ((𝐴 × 𝐵) “ 𝐶) = ∅)
 
Theoremxpima2 5566 The image by a Cartesian product. (Contributed by Thierry Arnoux, 16-Dec-2017.)
((𝐴𝐶) ≠ ∅ → ((𝐴 × 𝐵) “ 𝐶) = 𝐵)
 
Theoremxpimasn 5567 The image of a singleton by a Cartesian product. (Contributed by Thierry Arnoux, 14-Jan-2018.) (Proof shortened by BJ, 6-Apr-2019.)
(𝑋𝐴 → ((𝐴 × 𝐵) “ {𝑋}) = 𝐵)
 
Theoremsossfld 5568 The base set of a strict order is contained in the field of the relation, except possibly for one element (note that ∅ Or {𝐵}). (Contributed by Mario Carneiro, 27-Apr-2015.)
((𝑅 Or 𝐴𝐵𝐴) → (𝐴 ∖ {𝐵}) ⊆ (dom 𝑅 ∪ ran 𝑅))
 
Theoremsofld 5569 The base set of a nonempty strict order is the same as the field of the relation. (Contributed by Mario Carneiro, 15-May-2015.)
((𝑅 Or 𝐴𝑅 ⊆ (𝐴 × 𝐴) ∧ 𝑅 ≠ ∅) → 𝐴 = (dom 𝑅 ∪ ran 𝑅))
 
Theoremcnvcnv3 5570* The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
 
Theoremdfrel2 5571 Alternate definition of relation. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 29-Dec-1996.)
(Rel 𝑅𝑅 = 𝑅)
 
Theoremdfrel4v 5572* A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6228 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.)
(Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
 
Theoremdfrel4 5573* A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 6228 for relations. (Contributed by Mario Carneiro, 16-Aug-2015.) (Revised by Thierry Arnoux, 11-May-2017.)
𝑥𝑅    &   𝑦𝑅       (Rel 𝑅𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦})
 
Theoremcnvcnv 5574 The double converse of a class strips out all elements that are not ordered pairs. (Contributed by NM, 8-Dec-2003.) (Proof shortened by BJ, 26-Nov-2021.)
𝐴 = (𝐴 ∩ (V × V))
 
TheoremcnvcnvOLD 5575 Obsolete proof of cnvcnv 5574 as of 26-Nov-2021. (Contributed by NM, 8-Dec-2003.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = (𝐴 ∩ (V × V))
 
Theoremcnvcnv2 5576 The double converse of a class equals its restriction to the universe. (Contributed by NM, 8-Oct-2007.)
𝐴 = (𝐴 ↾ V)
 
Theoremcnvcnvss 5577 The double converse of a class is a subclass. Exercise 2 of [TakeutiZaring] p. 25. (Contributed by NM, 23-Jul-2004.)
𝐴𝐴
 
Theoremcnveqb 5578 Equality theorem for converse. (Contributed by FL, 19-Sep-2011.)
((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵𝐴 = 𝐵))
 
Theoremcnveq0 5579 A relation empty iff its converse is empty. (Contributed by FL, 19-Sep-2011.)
(Rel 𝐴 → (𝐴 = ∅ ↔ 𝐴 = ∅))
 
Theoremdfrel3 5580 Alternate definition of relation. (Contributed by NM, 14-May-2008.)
(Rel 𝑅 ↔ (𝑅 ↾ V) = 𝑅)
 
Theoremdmresv 5581 The domain of a universal restriction. (Contributed by NM, 14-May-2008.)
dom (𝐴 ↾ V) = dom 𝐴
 
Theoremrnresv 5582 The range of a universal restriction. (Contributed by NM, 14-May-2008.)
ran (𝐴 ↾ V) = ran 𝐴
 
Theoremdfrn4 5583 Range defined in terms of image. (Contributed by NM, 14-May-2008.)
ran 𝐴 = (𝐴 “ V)
 
Theoremcsbrn 5584 Distribute proper substitution through the range of a class. (Contributed by Alan Sare, 10-Nov-2012.)
𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵
 
Theoremrescnvcnv 5585 The restriction of the double converse of a class. (Contributed by NM, 8-Apr-2007.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvcnvres 5586 The double converse of the restriction of a class. (Contributed by NM, 3-Jun-2007.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremimacnvcnv 5587 The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremdmsnn0 5588 The domain of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴 ∈ (V × V) ↔ dom {𝐴} ≠ ∅)
 
Theoremrnsnn0 5589 The range of a singleton is nonzero iff the singleton argument is an ordered pair. (Contributed by NM, 14-Dec-2008.)
(𝐴 ∈ (V × V) ↔ ran {𝐴} ≠ ∅)
 
Theoremdmsn0 5590 The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004.)
dom {∅} = ∅
 
Theoremcnvsn0 5591 The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
{∅} = ∅
 
Theoremdmsn0el 5592 The domain of a singleton is empty if the singleton's argument contains the empty set. (Contributed by NM, 15-Dec-2008.)
(∅ ∈ 𝐴 → dom {𝐴} = ∅)
 
Theoremrelsn2 5593 A singleton is a relation iff it has a nonempty domain. (Contributed by NM, 25-Sep-2013.)
𝐴 ∈ V       (Rel {𝐴} ↔ dom {𝐴} ≠ ∅)
 
Theoremdmsnopg 5594 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by Mario Carneiro, 26-Apr-2015.)
(𝐵𝑉 → dom {⟨𝐴, 𝐵⟩} = {𝐴})
 
Theoremdmsnopss 5595 The domain of a singleton of an ordered pair is a subset of the singleton of the first member (with no sethood assumptions on 𝐵). (Contributed by Mario Carneiro, 30-Apr-2015.)
dom {⟨𝐴, 𝐵⟩} ⊆ {𝐴}
 
Theoremdmpropg 5596 The domain of an unordered pair of ordered pairs. (Contributed by Mario Carneiro, 26-Apr-2015.)
((𝐵𝑉𝐷𝑊) → dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶})
 
Theoremdmsnop 5597 The domain of a singleton of an ordered pair is the singleton of the first member. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Revised by Mario Carneiro, 26-Apr-2015.)
𝐵 ∈ V       dom {⟨𝐴, 𝐵⟩} = {𝐴}
 
Theoremdmprop 5598 The domain of an unordered pair of ordered pairs. (Contributed by NM, 13-Sep-2011.)
𝐵 ∈ V    &   𝐷 ∈ V       dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩} = {𝐴, 𝐶}
 
Theoremdmtpop 5599 The domain of an unordered triple of ordered pairs. (Contributed by NM, 14-Sep-2011.)
𝐵 ∈ V    &   𝐷 ∈ V    &   𝐹 ∈ V       dom {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} = {𝐴, 𝐶, 𝐸}
 
Theoremcnvcnvsn 5600 Double converse of a singleton of an ordered pair. (Unlike cnvsn 5606, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
{⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42316
  Copyright terms: Public domain < Previous  Next >