MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmpodxf Structured version   Visualization version   GIF version

Theorem ovmpodxf 7293
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpodx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpodx.3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
ovmpodx.4 (𝜑𝐴𝐶)
ovmpodx.5 (𝜑𝐵𝐿)
ovmpodx.6 (𝜑𝑆𝑋)
ovmpodxf.px 𝑥𝜑
ovmpodxf.py 𝑦𝜑
ovmpodxf.ay 𝑦𝐴
ovmpodxf.bx 𝑥𝐵
ovmpodxf.sx 𝑥𝑆
ovmpodxf.sy 𝑦𝑆
Assertion
Ref Expression
ovmpodxf (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑦)   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpodxf
StepHypRef Expression
1 ovmpodx.1 . . 3 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
21oveqd 7166 . 2 (𝜑 → (𝐴𝐹𝐵) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3 ovmpodx.4 . . . 4 (𝜑𝐴𝐶)
4 ovmpodxf.px . . . . 5 𝑥𝜑
5 ovmpodx.5 . . . . . 6 (𝜑𝐵𝐿)
6 ovmpodxf.py . . . . . . 7 𝑦𝜑
7 eqid 2820 . . . . . . . . 9 (𝑥𝐶, 𝑦𝐷𝑅) = (𝑥𝐶, 𝑦𝐷𝑅)
87ovmpt4g 7290 . . . . . . . 8 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)
98a1i 11 . . . . . . 7 (𝜑 → ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
106, 9alrimi 2212 . . . . . 6 (𝜑 → ∀𝑦((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
115, 10spsbcd 3782 . . . . 5 (𝜑[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
124, 11alrimi 2212 . . . 4 (𝜑 → ∀𝑥[𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
133, 12spsbcd 3782 . . 3 (𝜑[𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅))
145adantr 483 . . . . 5 ((𝜑𝑥 = 𝐴) → 𝐵𝐿)
15 simplr 767 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥 = 𝐴)
163ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐴𝐶)
1715, 16eqeltrd 2912 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑥𝐶)
185ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐵𝐿)
19 simpr 487 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦 = 𝐵)
20 ovmpodx.3 . . . . . . . . 9 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
2120adantr 483 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝐷 = 𝐿)
2218, 19, 213eltr4d 2927 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑦𝐷)
23 ovmpodx.2 . . . . . . . . 9 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
2423anassrs 470 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆)
25 ovmpodx.6 . . . . . . . . . 10 (𝜑𝑆𝑋)
2625elexd 3511 . . . . . . . . 9 (𝜑𝑆 ∈ V)
2726ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑆 ∈ V)
2824, 27eqeltrd 2912 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → 𝑅 ∈ V)
29 biimt 363 . . . . . . 7 ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3017, 22, 28, 29syl3anc 1366 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ ((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅)))
3115, 19oveq12d 7167 . . . . . . 7 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵))
3231, 24eqeq12d 2836 . . . . . 6 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → ((𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅 ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
3330, 32bitr3d 283 . . . . 5 (((𝜑𝑥 = 𝐴) ∧ 𝑦 = 𝐵) → (((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
34 ovmpodxf.ay . . . . . . 7 𝑦𝐴
3534nfeq2 2994 . . . . . 6 𝑦 𝑥 = 𝐴
366, 35nfan 1899 . . . . 5 𝑦(𝜑𝑥 = 𝐴)
37 nfmpo2 7228 . . . . . . . 8 𝑦(𝑥𝐶, 𝑦𝐷𝑅)
38 nfcv 2976 . . . . . . . 8 𝑦𝐵
3934, 37, 38nfov 7179 . . . . . . 7 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
40 ovmpodxf.sy . . . . . . 7 𝑦𝑆
4139, 40nfeq 2990 . . . . . 6 𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
4241a1i 11 . . . . 5 ((𝜑𝑥 = 𝐴) → Ⅎ𝑦(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
4314, 33, 36, 42sbciedf 3809 . . . 4 ((𝜑𝑥 = 𝐴) → ([𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
44 nfcv 2976 . . . . . . 7 𝑥𝐴
45 nfmpo1 7227 . . . . . . 7 𝑥(𝑥𝐶, 𝑦𝐷𝑅)
46 ovmpodxf.bx . . . . . . 7 𝑥𝐵
4744, 45, 46nfov 7179 . . . . . 6 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵)
48 ovmpodxf.sx . . . . . 6 𝑥𝑆
4947, 48nfeq 2990 . . . . 5 𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆
5049a1i 11 . . . 4 (𝜑 → Ⅎ𝑥(𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
513, 43, 4, 50sbciedf 3809 . . 3 (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]((𝑥𝐶𝑦𝐷𝑅 ∈ V) → (𝑥(𝑥𝐶, 𝑦𝐷𝑅)𝑦) = 𝑅) ↔ (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆))
5213, 51mpbid 234 . 2 (𝜑 → (𝐴(𝑥𝐶, 𝑦𝐷𝑅)𝐵) = 𝑆)
532, 52eqtrd 2855 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1082   = wceq 1536  wnf 1783  wcel 2113  wnfc 2960  Vcvv 3491  [wsbc 3768  (class class class)co 7149  cmpo 7151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154
This theorem is referenced by:  ovmpodx  7294  elovmporab  7384  elovmporab1w  7385  elovmporab1  7386  ovmpt3rab1  7396  mpoxopoveq  7878  fvmpocurryd  7930  mdetralt2  21213  mdetunilem2  21217  gsummatr01lem4  21262
  Copyright terms: Public domain W3C validator