Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp21 Structured version   Visualization version   GIF version

Theorem pibp21 34699
Description: Property P000021 of pi-base. The class of weakly countably compact topologies, or limit point compact topologies. A space 𝑋 is weakly countably compact if every infinite subset of 𝑋 has a limit point. (Contributed by ML, 9-Dec-2020.)
Hypotheses
Ref Expression
pibp21.x 𝑋 = 𝐽
pibp21.21 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
Assertion
Ref Expression
pibp21 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋,𝑦   𝑧,𝑋
Allowed substitution hints:   𝑊(𝑥,𝑦,𝑧)

Proof of Theorem pibp21
StepHypRef Expression
1 unieq 4849 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝐽)
2 pibp21.x . . . . . 6 𝑋 = 𝐽
31, 2syl6eqr 2874 . . . . 5 (𝑥 = 𝐽 𝑥 = 𝑋)
43pweqd 4558 . . . 4 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝑋)
54difeq1d 4098 . . 3 (𝑥 = 𝐽 → (𝒫 𝑥 ∖ Fin) = (𝒫 𝑋 ∖ Fin))
6 fveq2 6670 . . . . . 6 (𝑥 = 𝐽 → (limPt‘𝑥) = (limPt‘𝐽))
76fveq1d 6672 . . . . 5 (𝑥 = 𝐽 → ((limPt‘𝑥)‘𝑦) = ((limPt‘𝐽)‘𝑦))
87eleq2d 2898 . . . 4 (𝑥 = 𝐽 → (𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
93, 8rexeqbidv 3402 . . 3 (𝑥 = 𝐽 → (∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
105, 9raleqbidv 3401 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦) ↔ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
11 pibp21.21 . 2 𝑊 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ (𝒫 𝑥 ∖ Fin)∃𝑧 𝑥𝑧 ∈ ((limPt‘𝑥)‘𝑦)}
1210, 11elrab2 3683 1 (𝐽𝑊 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ (𝒫 𝑋 ∖ Fin)∃𝑧𝑋 𝑧 ∈ ((limPt‘𝐽)‘𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  cdif 3933  𝒫 cpw 4539   cuni 4838  cfv 6355  Fincfn 8509  Topctop 21501  limPtclp 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363
This theorem is referenced by:  pibt2  34701
  Copyright terms: Public domain W3C validator