Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prmidl Structured version   Visualization version   GIF version

Theorem prmidl 30978
Description: The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Thierry Arnoux, 12-Jan-2024.)
Hypotheses
Ref Expression
prmidlval.1 𝐵 = (Base‘𝑅)
prmidlval.2 · = (.r𝑅)
Assertion
Ref Expression
prmidl ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑃,𝑦   𝑥,𝐼   𝑥,𝐽,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   · (𝑥,𝑦)   𝐼(𝑦)

Proof of Theorem prmidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3404 . . . . 5 (𝑏 = 𝐽 → (∀𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
21ralbidv 3196 . . . 4 (𝑏 = 𝐽 → (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃))
3 sseq1 3985 . . . . 5 (𝑏 = 𝐽 → (𝑏𝑃𝐽𝑃))
43orbi2d 912 . . . 4 (𝑏 = 𝐽 → ((𝐼𝑃𝑏𝑃) ↔ (𝐼𝑃𝐽𝑃)))
52, 4imbi12d 347 . . 3 (𝑏 = 𝐽 → ((∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃))))
6 raleq 3404 . . . . . 6 (𝑎 = 𝐼 → (∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 ↔ ∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃))
7 sseq1 3985 . . . . . . 7 (𝑎 = 𝐼 → (𝑎𝑃𝐼𝑃))
87orbi1d 913 . . . . . 6 (𝑎 = 𝐼 → ((𝑎𝑃𝑏𝑃) ↔ (𝐼𝑃𝑏𝑃)))
96, 8imbi12d 347 . . . . 5 (𝑎 = 𝐼 → ((∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ (∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
109ralbidv 3196 . . . 4 (𝑎 = 𝐼 → (∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)) ↔ ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃))))
11 prmidlval.1 . . . . . . . 8 𝐵 = (Base‘𝑅)
12 prmidlval.2 . . . . . . . 8 · = (.r𝑅)
1311, 12isprmidl 30976 . . . . . . 7 (𝑅 ∈ Ring → (𝑃 ∈ (PrmIdeal‘𝑅) ↔ (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))))
1413biimpa 479 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → (𝑃 ∈ (LIdeal‘𝑅) ∧ 𝑃𝐵 ∧ ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃))))
1514simp3d 1139 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
1615adantr 483 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑎 ∈ (LIdeal‘𝑅)∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝑎𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝑎𝑃𝑏𝑃)))
17 simprl 769 . . . 4 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐼 ∈ (LIdeal‘𝑅))
1810, 16, 17rspcdva 3622 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → ∀𝑏 ∈ (LIdeal‘𝑅)(∀𝑥𝐼𝑦𝑏 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝑏𝑃)))
19 simprr 771 . . 3 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → 𝐽 ∈ (LIdeal‘𝑅))
205, 18, 19rspcdva 3622 . 2 (((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) → (∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃 → (𝐼𝑃𝐽𝑃)))
2120imp 409 1 ((((𝑅 ∈ Ring ∧ 𝑃 ∈ (PrmIdeal‘𝑅)) ∧ (𝐼 ∈ (LIdeal‘𝑅) ∧ 𝐽 ∈ (LIdeal‘𝑅))) ∧ ∀𝑥𝐼𝑦𝐽 (𝑥 · 𝑦) ∈ 𝑃) → (𝐼𝑃𝐽𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wral 3137  wss 3929  cfv 6348  (class class class)co 7149  Basecbs 16476  .rcmulr 16559  Ringcrg 19290  LIdealclidl 19935  PrmIdealcprmidl 30973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7152  df-prmidl 30974
This theorem is referenced by:  idlmulssprm  30980  isprmidlc  30985
  Copyright terms: Public domain W3C validator