MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releq Structured version   Visualization version   GIF version

Theorem releq 5235
Description: Equality theorem for the relation predicate. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
releq (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releq
StepHypRef Expression
1 sseq1 3659 . 2 (𝐴 = 𝐵 → (𝐴 ⊆ (V × V) ↔ 𝐵 ⊆ (V × V)))
2 df-rel 5150 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
3 df-rel 5150 . 2 (Rel 𝐵𝐵 ⊆ (V × V))
41, 2, 33bitr4g 303 1 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  Vcvv 3231  wss 3607   × cxp 5141  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-in 3614  df-ss 3621  df-rel 5150
This theorem is referenced by:  releqi  5236  releqd  5237  dfrel2  5618  tposfn2  7419  ereq1  7794  isps  17249  isdir  17279  fpwrelmapffslem  29635  bnj1321  31221  refreleq  34410  symreleq  34444  prtlem12  34471  relintabex  38204  clrellem  38246  clcnvlem  38247
  Copyright terms: Public domain W3C validator