![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > relintabex | Structured version Visualization version GIF version |
Description: If the intersection of a class is a relation, then the class is non-empty. (Contributed by RP, 12-Aug-2020.) |
Ref | Expression |
---|---|
relintabex | ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnex 4968 | . . . 4 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V ↔ ∩ {𝑥 ∣ 𝜑} = V) | |
2 | 0nelxp 5298 | . . . . . . 7 ⊢ ¬ ∅ ∈ (V × V) | |
3 | 0ex 4940 | . . . . . . . 8 ⊢ ∅ ∈ V | |
4 | eleq1 2825 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → (𝑥 ∈ (V × V) ↔ ∅ ∈ (V × V))) | |
5 | 4 | notbid 307 | . . . . . . . 8 ⊢ (𝑥 = ∅ → (¬ 𝑥 ∈ (V × V) ↔ ¬ ∅ ∈ (V × V))) |
6 | 3, 5 | spcev 3438 | . . . . . . 7 ⊢ (¬ ∅ ∈ (V × V) → ∃𝑥 ¬ 𝑥 ∈ (V × V)) |
7 | 2, 6 | ax-mp 5 | . . . . . 6 ⊢ ∃𝑥 ¬ 𝑥 ∈ (V × V) |
8 | nss 3802 | . . . . . . . 8 ⊢ (¬ V ⊆ (V × V) ↔ ∃𝑥(𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V × V))) | |
9 | df-rex 3054 | . . . . . . . 8 ⊢ (∃𝑥 ∈ V ¬ 𝑥 ∈ (V × V) ↔ ∃𝑥(𝑥 ∈ V ∧ ¬ 𝑥 ∈ (V × V))) | |
10 | rexv 3358 | . . . . . . . 8 ⊢ (∃𝑥 ∈ V ¬ 𝑥 ∈ (V × V) ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V)) | |
11 | 8, 9, 10 | 3bitr2i 288 | . . . . . . 7 ⊢ (¬ V ⊆ (V × V) ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V)) |
12 | df-rel 5271 | . . . . . . 7 ⊢ (Rel V ↔ V ⊆ (V × V)) | |
13 | 11, 12 | xchnxbir 322 | . . . . . 6 ⊢ (¬ Rel V ↔ ∃𝑥 ¬ 𝑥 ∈ (V × V)) |
14 | 7, 13 | mpbir 221 | . . . . 5 ⊢ ¬ Rel V |
15 | releq 5356 | . . . . 5 ⊢ (∩ {𝑥 ∣ 𝜑} = V → (Rel ∩ {𝑥 ∣ 𝜑} ↔ Rel V)) | |
16 | 14, 15 | mtbiri 316 | . . . 4 ⊢ (∩ {𝑥 ∣ 𝜑} = V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
17 | 1, 16 | sylbi 207 | . . 3 ⊢ (¬ ∩ {𝑥 ∣ 𝜑} ∈ V → ¬ Rel ∩ {𝑥 ∣ 𝜑}) |
18 | 17 | con4i 113 | . 2 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ∈ V) |
19 | intexab 4969 | . 2 ⊢ (∃𝑥𝜑 ↔ ∩ {𝑥 ∣ 𝜑} ∈ V) | |
20 | 18, 19 | sylibr 224 | 1 ⊢ (Rel ∩ {𝑥 ∣ 𝜑} → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1630 ∃wex 1851 ∈ wcel 2137 {cab 2744 ∃wrex 3049 Vcvv 3338 ⊆ wss 3713 ∅c0 4056 ∩ cint 4625 × cxp 5262 Rel wrel 5269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pr 5053 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-v 3340 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-sn 4320 df-pr 4322 df-op 4326 df-int 4626 df-opab 4863 df-xp 5270 df-rel 5271 |
This theorem is referenced by: relintab 38389 |
Copyright terms: Public domain | W3C validator |