MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbxp Structured version   Visualization version   GIF version

Theorem csbxp 5652
Description: Distribute proper substitution through the Cartesian product of two classes. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbxp 𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)

Proof of Theorem csbxp
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbab 4391 . . 3 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
2 sbcex2 3836 . . . . 5 ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))
3 sbcex2 3836 . . . . . . 7 ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)))
4 sbcan 3823 . . . . . . . . 9 ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))
5 sbcg 3849 . . . . . . . . . . 11 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩))
6 sbcan 3823 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ ([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶))
7 sbcel2 4369 . . . . . . . . . . . . . 14 ([𝐴 / 𝑥]𝑤𝐵𝑤𝐴 / 𝑥𝐵)
8 sbcel2 4369 . . . . . . . . . . . . . 14 ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)
97, 8anbi12i 628 . . . . . . . . . . . . 13 (([𝐴 / 𝑥]𝑤𝐵[𝐴 / 𝑥]𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
106, 9bitri 277 . . . . . . . . . . . 12 ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
1110a1i 11 . . . . . . . . . . 11 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) ↔ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
125, 11anbi12d 632 . . . . . . . . . 10 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
13 sbcex 3784 . . . . . . . . . . . . 13 ([𝐴 / 𝑥](𝑤𝐵𝑦𝐶) → 𝐴 ∈ V)
1413con3i 157 . . . . . . . . . . . 12 𝐴 ∈ V → ¬ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶))
1514intnand 491 . . . . . . . . . . 11 𝐴 ∈ V → ¬ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)))
16 noel 4298 . . . . . . . . . . . . . . 15 ¬ 𝑦 ∈ ∅
1716a1i 11 . . . . . . . . . . . . . 14 𝐴 ∈ V → ¬ 𝑦 ∈ ∅)
18 csbprc 4360 . . . . . . . . . . . . . 14 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
1917, 18neleqtrrd 2937 . . . . . . . . . . . . 13 𝐴 ∈ V → ¬ 𝑦𝐴 / 𝑥𝐶)
2019intnand 491 . . . . . . . . . . . 12 𝐴 ∈ V → ¬ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))
2120intnand 491 . . . . . . . . . . 11 𝐴 ∈ V → ¬ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
2215, 212falsed 379 . . . . . . . . . 10 𝐴 ∈ V → (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))))
2312, 22pm2.61i 184 . . . . . . . . 9 (([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
244, 23bitri 277 . . . . . . . 8 ([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
2524exbii 1848 . . . . . . 7 (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
263, 25bitri 277 . . . . . 6 ([𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
2726exbii 1848 . . . . 5 (∃𝑤[𝐴 / 𝑥]𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
282, 27bitri 277 . . . 4 ([𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶)) ↔ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)))
2928abbii 2888 . . 3 {𝑧[𝐴 / 𝑥]𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
301, 29eqtri 2846 . 2 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
31 df-xp 5563 . . . 4 (𝐵 × 𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)}
32 df-opab 5131 . . . 4 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐵𝑦𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
3331, 32eqtri 2846 . . 3 (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
3433csbeq2i 3893 . 2 𝐴 / 𝑥(𝐵 × 𝐶) = 𝐴 / 𝑥{𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐵𝑦𝐶))}
35 df-xp 5563 . . 3 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)}
36 df-opab 5131 . . 3 {⟨𝑤, 𝑦⟩ ∣ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶)} = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
3735, 36eqtri 2846 . 2 (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶) = {𝑧 ∣ ∃𝑤𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤𝐴 / 𝑥𝐵𝑦𝐴 / 𝑥𝐶))}
3830, 34, 373eqtr4i 2856 1 𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  {cab 2801  Vcvv 3496  [wsbc 3774  csb 3885  c0 4293  cop 4575  {copab 5130   × cxp 5555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-nul 4294  df-opab 5131  df-xp 5563
This theorem is referenced by:  csbres  5858  csbfinxpg  34671  csbresgVD  41236  disjxp1  41338
  Copyright terms: Public domain W3C validator