MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reluni Structured version   Visualization version   GIF version

Theorem reluni 5149
Description: The union of a class is a relation iff any member is a relation. Exercise 6 of [TakeutiZaring] p. 25 and its converse. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
reluni (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem reluni
StepHypRef Expression
1 uniiun 4499 . . 3 𝐴 = 𝑥𝐴 𝑥
21releqi 5111 . 2 (Rel 𝐴 ↔ Rel 𝑥𝐴 𝑥)
3 reliun 5147 . 2 (Rel 𝑥𝐴 𝑥 ↔ ∀𝑥𝐴 Rel 𝑥)
42, 3bitri 262 1 (Rel 𝐴 ↔ ∀𝑥𝐴 Rel 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wb 194  wral 2891   cuni 4362   ciun 4445  Rel wrel 5029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-v 3170  df-in 3542  df-ss 3549  df-uni 4363  df-iun 4447  df-rel 5031
This theorem is referenced by:  fununi  5860  wfrrel  7280  tfrlem6  7338  bnj1379  29957  frrlem5b  30831  frrlem6  30835
  Copyright terms: Public domain W3C validator