MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reliin Structured version   Visualization version   GIF version

Theorem reliin 5273
Description: An indexed intersection is a relation if at least one of the member of the indexed family is a relation. (Contributed by NM, 8-Mar-2014.)
Assertion
Ref Expression
reliin (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)

Proof of Theorem reliin
StepHypRef Expression
1 iinss 4603 . 2 (∃𝑥𝐴 𝐵 ⊆ (V × V) → 𝑥𝐴 𝐵 ⊆ (V × V))
2 df-rel 5150 . . 3 (Rel 𝐵𝐵 ⊆ (V × V))
32rexbii 3070 . 2 (∃𝑥𝐴 Rel 𝐵 ↔ ∃𝑥𝐴 𝐵 ⊆ (V × V))
4 df-rel 5150 . 2 (Rel 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ (V × V))
51, 3, 43imtr4i 281 1 (∃𝑥𝐴 Rel 𝐵 → Rel 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wrex 2942  Vcvv 3231  wss 3607   ciin 4553   × cxp 5141  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-in 3614  df-ss 3621  df-iin 4555  df-rel 5150
This theorem is referenced by:  relint  5275  xpiindi  5290  dibglbN  36772  dihglbcpreN  36906
  Copyright terms: Public domain W3C validator