![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescval | Structured version Visualization version GIF version |
Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescval.1 | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
Ref | Expression |
---|---|
rescval | ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescval.1 | . 2 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
2 | elex 3352 | . . 3 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ V) | |
3 | elex 3352 | . . 3 ⊢ (𝐻 ∈ 𝑊 → 𝐻 ∈ V) | |
4 | simpl 474 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 𝑐 = 𝐶) | |
5 | simpr 479 | . . . . . . . 8 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ℎ = 𝐻) | |
6 | 5 | dmeqd 5481 | . . . . . . 7 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom ℎ = dom 𝐻) |
7 | 6 | dmeqd 5481 | . . . . . 6 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → dom dom ℎ = dom dom 𝐻) |
8 | 4, 7 | oveq12d 6832 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → (𝑐 ↾s dom dom ℎ) = (𝐶 ↾s dom dom 𝐻)) |
9 | 5 | opeq2d 4560 | . . . . 5 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → 〈(Hom ‘ndx), ℎ〉 = 〈(Hom ‘ndx), 𝐻〉) |
10 | 8, 9 | oveq12d 6832 | . . . 4 ⊢ ((𝑐 = 𝐶 ∧ ℎ = 𝐻) → ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
11 | df-resc 16692 | . . . 4 ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx), ℎ〉)) | |
12 | ovex 6842 | . . . 4 ⊢ ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉) ∈ V | |
13 | 10, 11, 12 | ovmpt2a 6957 | . . 3 ⊢ ((𝐶 ∈ V ∧ 𝐻 ∈ V) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | 2, 3, 13 | syl2an 495 | . 2 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
15 | 1, 14 | syl5eq 2806 | 1 ⊢ ((𝐶 ∈ 𝑉 ∧ 𝐻 ∈ 𝑊) → 𝐷 = ((𝐶 ↾s dom dom 𝐻) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 〈cop 4327 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 ndxcnx 16076 sSet csts 16077 ↾s cress 16080 Hom chom 16174 ↾cat cresc 16689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-resc 16692 |
This theorem is referenced by: rescval2 16709 |
Copyright terms: Public domain | W3C validator |