 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Visualization version   GIF version

Theorem rnresv 5556
 Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv ran (𝐴 ↾ V) = ran 𝐴

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 5550 . . 3 𝐴 = (𝐴 ↾ V)
21rneqi 5316 . 2 ran 𝐴 = ran (𝐴 ↾ V)
3 rncnvcnv 5313 . 2 ran 𝐴 = ran 𝐴
42, 3eqtr3i 2650 1 ran (𝐴 ↾ V) = ran 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1480  Vcvv 3191  ◡ccnv 5078  ran crn 5080   ↾ cres 5081 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pr 4872 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rab 2921  df-v 3193  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-br 4619  df-opab 4679  df-xp 5085  df-rel 5086  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091 This theorem is referenced by:  dfrn4  5557
 Copyright terms: Public domain W3C validator