Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  s1dmALT Structured version   Visualization version   GIF version

Theorem s1dmALT 13344
 Description: Alternate version of s1dm 13343, having a shorter proof, but requiring that 𝐴 ia a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
s1dmALT (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})

Proof of Theorem s1dmALT
StepHypRef Expression
1 s1val 13333 . . 3 (𝐴𝑆 → ⟨“𝐴”⟩ = {⟨0, 𝐴⟩})
21dmeqd 5296 . 2 (𝐴𝑆 → dom ⟨“𝐴”⟩ = dom {⟨0, 𝐴⟩})
3 dmsnopg 5575 . 2 (𝐴𝑆 → dom {⟨0, 𝐴⟩} = {0})
42, 3eqtrd 2655 1 (𝐴𝑆 → dom ⟨“𝐴”⟩ = {0})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  {csn 4155  ⟨cop 4161  dom cdm 5084  0cc0 9896  ⟨“cs1 13249 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-s1 13257 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator