![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > seeq1 | Structured version Visualization version GIF version |
Description: Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.) |
Ref | Expression |
---|---|
seeq1 | ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss2 3691 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑆 ⊆ 𝑅) | |
2 | sess1 5111 | . . 3 ⊢ (𝑆 ⊆ 𝑅 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 → 𝑆 Se 𝐴)) |
4 | eqimss 3690 | . . 3 ⊢ (𝑅 = 𝑆 → 𝑅 ⊆ 𝑆) | |
5 | sess1 5111 | . . 3 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑅 = 𝑆 → (𝑆 Se 𝐴 → 𝑅 Se 𝐴)) |
7 | 3, 6 | impbid 202 | 1 ⊢ (𝑅 = 𝑆 → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ⊆ wss 3607 Se wse 5100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rab 2950 df-v 3233 df-in 3614 df-ss 3621 df-br 4686 df-se 5103 |
This theorem is referenced by: oieq1 8458 |
Copyright terms: Public domain | W3C validator |