MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oieq1 Structured version   Visualization version   GIF version

Theorem oieq1 8273
Description: Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.)
Assertion
Ref Expression
oieq1 (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴))

Proof of Theorem oieq1
Dummy variables 𝑗 𝑡 𝑢 𝑣 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 weeq1 5012 . . . 4 (𝑅 = 𝑆 → (𝑅 We 𝐴𝑆 We 𝐴))
2 seeq1 4996 . . . 4 (𝑅 = 𝑆 → (𝑅 Se 𝐴𝑆 Se 𝐴))
31, 2anbi12d 742 . . 3 (𝑅 = 𝑆 → ((𝑅 We 𝐴𝑅 Se 𝐴) ↔ (𝑆 We 𝐴𝑆 Se 𝐴)))
4 breq 4575 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑗𝑅𝑤𝑗𝑆𝑤))
54ralbidv 2964 . . . . . . . 8 (𝑅 = 𝑆 → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ ran 𝑗𝑆𝑤))
65rabbidv 3159 . . . . . . 7 (𝑅 = 𝑆 → {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤})
7 breq 4575 . . . . . . . . 9 (𝑅 = 𝑆 → (𝑢𝑅𝑣𝑢𝑆𝑣))
87notbid 306 . . . . . . . 8 (𝑅 = 𝑆 → (¬ 𝑢𝑅𝑣 ↔ ¬ 𝑢𝑆𝑣))
96, 8raleqbidv 3124 . . . . . . 7 (𝑅 = 𝑆 → (∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))
106, 9riotaeqbidv 6488 . . . . . 6 (𝑅 = 𝑆 → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))
1110mpteq2dv 4663 . . . . 5 (𝑅 = 𝑆 → ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣)))
12 recseq 7330 . . . . 5 (( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) = ( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣)) → recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))))
1311, 12syl 17 . . . 4 (𝑅 = 𝑆 → recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) = recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))))
1413imaeq1d 5367 . . . . . . 7 (𝑅 = 𝑆 → (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥) = (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥))
15 breq 4575 . . . . . . 7 (𝑅 = 𝑆 → (𝑧𝑅𝑡𝑧𝑆𝑡))
1614, 15raleqbidv 3124 . . . . . 6 (𝑅 = 𝑆 → (∀𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡))
1716rexbidv 3029 . . . . 5 (𝑅 = 𝑆 → (∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡))
1817rabbidv 3159 . . . 4 (𝑅 = 𝑆 → {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡} = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡})
1913, 18reseq12d 5301 . . 3 (𝑅 = 𝑆 → (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}) = (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡}))
203, 19ifbieq1d 4054 . 2 (𝑅 = 𝑆 → if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) = if((𝑆 We 𝐴𝑆 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡}), ∅))
21 df-oi 8271 . 2 OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
22 df-oi 8271 . 2 OrdIso(𝑆, 𝐴) = if((𝑆 We 𝐴𝑆 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑆𝑤} ¬ 𝑢𝑆𝑣))) “ 𝑥)𝑧𝑆𝑡}), ∅)
2320, 21, 223eqtr4g 2664 1 (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wral 2891  wrex 2892  {crab 2895  Vcvv 3168  c0 3869  ifcif 4031   class class class wbr 4573  cmpt 4633   Se wse 4981   We wwe 4982  ran crn 5025  cres 5026  cima 5027  Oncon0 5622  crio 6484  recscrecs 7327  OrdIsocoi 8270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-mpt 4635  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-cnv 5032  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-iota 5750  df-fv 5794  df-riota 6485  df-wrecs 7267  df-recs 7328  df-oi 8271
This theorem is referenced by:  hartogslem1  8303
  Copyright terms: Public domain W3C validator