Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlval Structured version   Visualization version   GIF version

Theorem snmlval 32578
Description: The property "𝐴 is simply normal in base 𝑅". A number is simply normal if each digit 0 ≤ 𝑏 < 𝑅 occurs in the base- 𝑅 digit string of 𝐴 with frequency 1 / 𝑅 (which is consistent with the expectation in an infinite random string of numbers selected from 0...𝑅 − 1). (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snml.s 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
Assertion
Ref Expression
snmlval (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
Distinct variable groups:   𝑘,𝑏,𝑛,𝑥,𝐴   𝑟,𝑏,𝑅,𝑘,𝑛,𝑥
Allowed substitution hints:   𝐴(𝑟)   𝑆(𝑥,𝑘,𝑛,𝑟,𝑏)

Proof of Theorem snmlval
StepHypRef Expression
1 oveq1 7163 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑟 − 1) = (𝑅 − 1))
21oveq2d 7172 . . . . . . . 8 (𝑟 = 𝑅 → (0...(𝑟 − 1)) = (0...(𝑅 − 1)))
3 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑅 → (𝑟𝑘) = (𝑅𝑘))
43oveq2d 7172 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅 → (𝑥 · (𝑟𝑘)) = (𝑥 · (𝑅𝑘)))
5 id 22 . . . . . . . . . . . . . . 15 (𝑟 = 𝑅𝑟 = 𝑅)
64, 5oveq12d 7174 . . . . . . . . . . . . . 14 (𝑟 = 𝑅 → ((𝑥 · (𝑟𝑘)) mod 𝑟) = ((𝑥 · (𝑅𝑘)) mod 𝑅))
76fveqeq2d 6678 . . . . . . . . . . . . 13 (𝑟 = 𝑅 → ((⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏 ↔ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏))
87rabbidv 3480 . . . . . . . . . . . 12 (𝑟 = 𝑅 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏})
98fveq2d 6674 . . . . . . . . . . 11 (𝑟 = 𝑅 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}))
109oveq1d 7171 . . . . . . . . . 10 (𝑟 = 𝑅 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))
1110mpteq2dv 5162 . . . . . . . . 9 (𝑟 = 𝑅 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)))
12 oveq2 7164 . . . . . . . . 9 (𝑟 = 𝑅 → (1 / 𝑟) = (1 / 𝑅))
1311, 12breq12d 5079 . . . . . . . 8 (𝑟 = 𝑅 → ((𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
142, 13raleqbidv 3401 . . . . . . 7 (𝑟 = 𝑅 → (∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
1514rabbidv 3480 . . . . . 6 (𝑟 = 𝑅 → {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)} = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})
16 snml.s . . . . . 6 𝑆 = (𝑟 ∈ (ℤ‘2) ↦ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑟 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑟𝑘)) mod 𝑟)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑟)})
17 reex 10628 . . . . . . 7 ℝ ∈ V
1817rabex 5235 . . . . . 6 {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ∈ V
1915, 16, 18fvmpt 6768 . . . . 5 (𝑅 ∈ (ℤ‘2) → (𝑆𝑅) = {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)})
2019eleq2d 2898 . . . 4 (𝑅 ∈ (ℤ‘2) → (𝐴 ∈ (𝑆𝑅) ↔ 𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)}))
21 oveq1 7163 . . . . . . . . . . . . 13 (𝑥 = 𝐴 → (𝑥 · (𝑅𝑘)) = (𝐴 · (𝑅𝑘)))
2221fvoveq1d 7178 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)))
2322eqeq1d 2823 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏 ↔ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏))
2423rabbidv 3480 . . . . . . . . . 10 (𝑥 = 𝐴 → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏} = {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏})
2524fveq2d 6674 . . . . . . . . 9 (𝑥 = 𝐴 → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) = (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}))
2625oveq1d 7171 . . . . . . . 8 (𝑥 = 𝐴 → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛) = ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛))
2726mpteq2dv 5162 . . . . . . 7 (𝑥 = 𝐴 → (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)))
2827breq1d 5076 . . . . . 6 (𝑥 = 𝐴 → ((𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
2928ralbidv 3197 . . . . 5 (𝑥 = 𝐴 → (∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅) ↔ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
3029elrab 3680 . . . 4 (𝐴 ∈ {𝑥 ∈ ℝ ∣ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝑥 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)} ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
3120, 30syl6bb 289 . . 3 (𝑅 ∈ (ℤ‘2) → (𝐴 ∈ (𝑆𝑅) ↔ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3231pm5.32i 577 . 2 ((𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ (𝑆𝑅)) ↔ (𝑅 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3316dmmptss 6095 . . . 4 dom 𝑆 ⊆ (ℤ‘2)
34 elfvdm 6702 . . . 4 (𝐴 ∈ (𝑆𝑅) → 𝑅 ∈ dom 𝑆)
3533, 34sseldi 3965 . . 3 (𝐴 ∈ (𝑆𝑅) → 𝑅 ∈ (ℤ‘2))
3635pm4.71ri 563 . 2 (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ (𝑆𝑅)))
37 3anass 1091 . 2 ((𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)) ↔ (𝑅 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅))))
3832, 36, 373bitr4i 305 1 (𝐴 ∈ (𝑆𝑅) ↔ (𝑅 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∀𝑏 ∈ (0...(𝑅 − 1))(𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝑏}) / 𝑛)) ⇝ (1 / 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142   class class class wbr 5066  cmpt 5146  dom cdm 5555  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  cuz 12244  ...cfz 12893  cfl 13161   mod cmo 13238  cexp 13430  chash 13691  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-cnex 10593  ax-resscn 10594
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159
This theorem is referenced by:  snmlflim  32579
  Copyright terms: Public domain W3C validator