![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > specval | Structured version Visualization version GIF version |
Description: The value of the spectrum of an operator. (Contributed by NM, 11-Apr-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
specval | ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10055 | . . 3 ⊢ ℂ ∈ V | |
2 | 1 | rabex 4845 | . 2 ⊢ {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} ∈ V |
3 | ax-hilex 27984 | . 2 ⊢ ℋ ∈ V | |
4 | oveq1 6697 | . . . . 5 ⊢ (𝑡 = 𝑇 → (𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ)))) | |
5 | f1eq1 6134 | . . . . 5 ⊢ ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))) = (𝑇 −op (𝑥 ·op ( I ↾ ℋ))) → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑡 = 𝑇 → ((𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
7 | 6 | notbid 307 | . . 3 ⊢ (𝑡 = 𝑇 → (¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ ↔ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ)) |
8 | 7 | rabbidv 3220 | . 2 ⊢ (𝑡 = 𝑇 → {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ} = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
9 | df-spec 28842 | . 2 ⊢ Lambda = (𝑡 ∈ ( ℋ ↑𝑚 ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) | |
10 | 2, 3, 3, 8, 9 | fvmptmap 7936 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (Lambda‘𝑇) = {𝑥 ∈ ℂ ∣ ¬ (𝑇 −op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 = wceq 1523 {crab 2945 I cid 5052 ↾ cres 5145 ⟶wf 5922 –1-1→wf1 5923 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ℋchil 27904 ·op chot 27924 −op chod 27925 Lambdacspc 27946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-hilex 27984 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-map 7901 df-spec 28842 |
This theorem is referenced by: speccl 28886 |
Copyright terms: Public domain | W3C validator |