MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swoso Structured version   Visualization version   GIF version

Theorem swoso 8322
Description: If the incomparability relation is equivalent to equality in a subset, then the partial order strictly orders the subset. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
swoer.1 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
swoer.2 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
swoer.3 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
swoso.4 (𝜑𝑌𝑋)
swoso.5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌𝑥𝑅𝑦)) → 𝑥 = 𝑦)
Assertion
Ref Expression
swoso (𝜑< Or 𝑌)
Distinct variable groups:   𝑥,𝑦,𝑧, <   𝜑,𝑥,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑧)   𝑌(𝑧)

Proof of Theorem swoso
StepHypRef Expression
1 swoso.4 . . 3 (𝜑𝑌𝑋)
2 swoer.2 . . . 4 ((𝜑 ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 < 𝑧 → ¬ 𝑧 < 𝑦))
3 swoer.3 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 < 𝑦 → (𝑥 < 𝑧𝑧 < 𝑦)))
42, 3swopo 5484 . . 3 (𝜑< Po 𝑋)
5 poss 5476 . . 3 (𝑌𝑋 → ( < Po 𝑋< Po 𝑌))
61, 4, 5sylc 65 . 2 (𝜑< Po 𝑌)
71sselda 3967 . . . . . . 7 ((𝜑𝑥𝑌) → 𝑥𝑋)
81sselda 3967 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
97, 8anim12dan 620 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑋𝑦𝑋))
10 swoer.1 . . . . . . 7 𝑅 = ((𝑋 × 𝑋) ∖ ( < < ))
1110brdifun 8318 . . . . . 6 ((𝑥𝑋𝑦𝑋) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦𝑦 < 𝑥)))
129, 11syl 17 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑅𝑦 ↔ ¬ (𝑥 < 𝑦𝑦 < 𝑥)))
13 df-3an 1085 . . . . . . 7 ((𝑥𝑌𝑦𝑌𝑥𝑅𝑦) ↔ ((𝑥𝑌𝑦𝑌) ∧ 𝑥𝑅𝑦))
14 swoso.5 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑦𝑌𝑥𝑅𝑦)) → 𝑥 = 𝑦)
1513, 14sylan2br 596 . . . . . 6 ((𝜑 ∧ ((𝑥𝑌𝑦𝑌) ∧ 𝑥𝑅𝑦)) → 𝑥 = 𝑦)
1615expr 459 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥𝑅𝑦𝑥 = 𝑦))
1712, 16sylbird 262 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (¬ (𝑥 < 𝑦𝑦 < 𝑥) → 𝑥 = 𝑦))
1817orrd 859 . . 3 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
19 3orcomb 1090 . . . 4 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ (𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦))
20 df-3or 1084 . . . 4 ((𝑥 < 𝑦𝑦 < 𝑥𝑥 = 𝑦) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
2119, 20bitri 277 . . 3 ((𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥) ↔ ((𝑥 < 𝑦𝑦 < 𝑥) ∨ 𝑥 = 𝑦))
2218, 21sylibr 236 . 2 ((𝜑 ∧ (𝑥𝑌𝑦𝑌)) → (𝑥 < 𝑦𝑥 = 𝑦𝑦 < 𝑥))
236, 22issod 5506 1 (𝜑< Or 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  cdif 3933  cun 3934  wss 3936   class class class wbr 5066   Po wpo 5472   Or wor 5473   × cxp 5553  ccnv 5554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-xp 5561  df-cnv 5563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator