MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdnznd Structured version   Visualization version   GIF version

Theorem swrdnznd 13997
Description: The value of a subword operation for noninteger arguments is the empty set. (This is due to our definition of function values for out-of-domain arguments, see ndmfv 6693). (Contributed by AV, 2-Dec-2022.) (New usage is discouraged.)
Assertion
Ref Expression
swrdnznd (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)

Proof of Theorem swrdnznd
Dummy variables 𝑠 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5584 . . . . 5 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) ↔ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
21biimpi 218 . . . 4 (⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
32adantl 484 . . 3 ((𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ))
43con3i 157 . 2 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)))
5 df-substr 13996 . . 3 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
65mpondm0 7379 . 2 (¬ (𝑆 ∈ V ∧ ⟨𝐹, 𝐿⟩ ∈ (ℤ × ℤ)) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
74, 6syl 17 1 (¬ (𝐹 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑆 substr ⟨𝐹, 𝐿⟩) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wcel 2113  Vcvv 3491  wss 3929  c0 4284  ifcif 4460  cop 4566  cmpt 5139   × cxp 5546  dom cdm 5548  cfv 6348  (class class class)co 7149  1st c1st 7680  2nd c2nd 7681  0cc0 10530   + caddc 10533  cmin 10863  cz 11975  ..^cfzo 13030   substr csubstr 13995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-xp 5554  df-dm 5558  df-iota 6307  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-substr 13996
This theorem is referenced by:  swrdnnn0nd  14011
  Copyright terms: Public domain W3C validator