MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclun Structured version   Visualization version   GIF version

Theorem trclun 13689
Description: Transitive closure of a union of relations. (Contributed by RP, 5-May-2020.)
Assertion
Ref Expression
trclun ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))

Proof of Theorem trclun
Dummy variables 𝑥 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unss 3765 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) ↔ (𝑅𝑆) ⊆ 𝑥)
2 simpl 473 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑅𝑥)
31, 2sylbir 225 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑅𝑥)
4 vex 3189 . . . . . . . . . . 11 𝑥 ∈ V
5 trcleq2lem 13664 . . . . . . . . . . 11 (𝑟 = 𝑥 → ((𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟) ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
64, 5elab 3333 . . . . . . . . . 10 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ↔ (𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
76biimpri 218 . . . . . . . . 9 ((𝑅𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
83, 7sylan 488 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
9 intss1 4457 . . . . . . . 8 (𝑥 ∈ {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
108, 9syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ⊆ 𝑥)
11 simpr 477 . . . . . . . . . 10 ((𝑅𝑥𝑆𝑥) → 𝑆𝑥)
121, 11sylbir 225 . . . . . . . . 9 ((𝑅𝑆) ⊆ 𝑥𝑆𝑥)
13 trcleq2lem 13664 . . . . . . . . . . 11 (𝑠 = 𝑥 → ((𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)))
144, 13elab 3333 . . . . . . . . . 10 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ↔ (𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
1514biimpri 218 . . . . . . . . 9 ((𝑆𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
1612, 15sylan 488 . . . . . . . 8 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → 𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
17 intss1 4457 . . . . . . . 8 (𝑥 ∈ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1816, 17syl 17 . . . . . . 7 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ⊆ 𝑥)
1910, 18unssd 3767 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥)
20 simpr 477 . . . . . 6 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (𝑥𝑥) ⊆ 𝑥)
2119, 20jca 554 . . . . 5 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
22 ssmin 4461 . . . . . . . 8 𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)}
23 ssmin 4461 . . . . . . . 8 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}
24 unss12 3763 . . . . . . . 8 ((𝑅 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∧ 𝑆 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) → (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
2522, 23, 24mp2an 707 . . . . . . 7 (𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
26 sstr 3591 . . . . . . 7 (((𝑅𝑆) ⊆ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∧ ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥) → (𝑅𝑆) ⊆ 𝑥)
2725, 26mpan 705 . . . . . 6 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 → (𝑅𝑆) ⊆ 𝑥)
2827anim1i 591 . . . . 5 ((( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) → ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
2921, 28impbii 199 . . . 4 (((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥) ↔ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥))
3029abbii 2736 . . 3 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
3130inteqi 4444 . 2 {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)} = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)}
32 unexg 6912 . . 3 ((𝑅𝑉𝑆𝑊) → (𝑅𝑆) ∈ V)
33 trclfv 13675 . . 3 ((𝑅𝑆) ∈ V → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
3432, 33syl 17 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = {𝑥 ∣ ((𝑅𝑆) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
35 simpl 473 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑅𝑉)
36 trclfv 13675 . . . . . 6 (𝑅𝑉 → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
3735, 36syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑅) = {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)})
38 simpr 477 . . . . . 6 ((𝑅𝑉𝑆𝑊) → 𝑆𝑊)
39 trclfv 13675 . . . . . 6 (𝑆𝑊 → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4038, 39syl 17 . . . . 5 ((𝑅𝑉𝑆𝑊) → (t+‘𝑆) = {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})
4137, 40uneq12d 3746 . . . 4 ((𝑅𝑉𝑆𝑊) → ((t+‘𝑅) ∪ (t+‘𝑆)) = ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}))
4241fveq2d 6152 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})))
43 fvex 6158 . . . . . 6 (t+‘𝑅) ∈ V
4436, 43syl6eqelr 2707 . . . . 5 (𝑅𝑉 {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V)
45 fvex 6158 . . . . . 6 (t+‘𝑆) ∈ V
4639, 45syl6eqelr 2707 . . . . 5 (𝑆𝑊 {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V)
47 unexg 6912 . . . . 5 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∈ V ∧ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)} ∈ V) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
4844, 46, 47syl2an 494 . . . 4 ((𝑅𝑉𝑆𝑊) → ( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V)
49 trclfv 13675 . . . 4 (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ∈ V → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5048, 49syl 17 . . 3 ((𝑅𝑉𝑆𝑊) → (t+‘( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)})) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5142, 50eqtrd 2655 . 2 ((𝑅𝑉𝑆𝑊) → (t+‘((t+‘𝑅) ∪ (t+‘𝑆))) = {𝑥 ∣ (( {𝑟 ∣ (𝑅𝑟 ∧ (𝑟𝑟) ⊆ 𝑟)} ∪ {𝑠 ∣ (𝑆𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)}) ⊆ 𝑥 ∧ (𝑥𝑥) ⊆ 𝑥)})
5231, 34, 513eqtr4a 2681 1 ((𝑅𝑉𝑆𝑊) → (t+‘(𝑅𝑆)) = (t+‘((t+‘𝑅) ∪ (t+‘𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  Vcvv 3186  cun 3553  wss 3555   cint 4440  ccom 5078  cfv 5847  t+ctcl 13658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-iota 5810  df-fun 5849  df-fv 5855  df-trcl 13660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator