Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txprel Structured version   Visualization version   GIF version

Theorem txprel 31961
 Description: A tail Cartesian product is a relationship. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
txprel Rel (𝐴𝐵)

Proof of Theorem txprel
StepHypRef Expression
1 txpss3v 31960 . . 3 (𝐴𝐵) ⊆ (V × (V × V))
2 xpss 5216 . . 3 (V × (V × V)) ⊆ (V × V)
31, 2sstri 3604 . 2 (𝐴𝐵) ⊆ (V × V)
4 df-rel 5111 . 2 (Rel (𝐴𝐵) ↔ (𝐴𝐵) ⊆ (V × V))
53, 4mpbir 221 1 Rel (𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3195   ⊆ wss 3567   × cxp 5102  Rel wrel 5109   ⊗ ctxp 31911 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-res 5116  df-txp 31935 This theorem is referenced by:  pprodss4v  31966
 Copyright terms: Public domain W3C validator