MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vprc Structured version   Visualization version   GIF version

Theorem vprc 5270
Description: The universal class is not a member of itself (and thus is not a set). Proposition 5.21 of [TakeutiZaring] p. 21; our proof, however, does not depend on the Axiom of Regularity. (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
vprc ¬ V ∈ V

Proof of Theorem vprc
StepHypRef Expression
1 vnex 5269 . 2 ¬ ∃𝑥 𝑥 = V
2 isset 3461 . 2 (V ∈ V ↔ ∃𝑥 𝑥 = V)
31, 2mtbir 323 1 ¬ V ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449
This theorem is referenced by:  nvel  5271  intex  5299  intnex  5300  abnex  7733  iprc  7887  opabn1stprc  8037  elfi2  9365  fi0  9371  ruALT  9556  cardmin2  9952  00lsp  20887  n0lplig  30412  fveqvfvv  47041  ndmaovcl  47204  vsn  48800  posnex  48968  prsnex  48969
  Copyright terms: Public domain W3C validator