MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  00lsp Structured version   Visualization version   GIF version

Theorem 00lsp 18900
Description: fvco4i 6233 lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Assertion
Ref Expression
00lsp ∅ = (LSpan‘∅)

Proof of Theorem 00lsp
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4750 . . 3 ∅ ∈ V
2 base0 15833 . . . 4 ∅ = (Base‘∅)
3 00lss 18861 . . . 4 ∅ = (LSubSp‘∅)
4 eqid 2621 . . . 4 (LSpan‘∅) = (LSpan‘∅)
52, 3, 4lspfval 18892 . . 3 (∅ ∈ V → (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}))
61, 5ax-mp 5 . 2 (LSpan‘∅) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
7 eqid 2621 . . . . 5 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
87dmmpt 5589 . . . 4 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V}
9 vprc 4756 . . . . . . 7 ¬ V ∈ V
10 rab0 3929 . . . . . . . . . 10 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = ∅
1110inteqi 4444 . . . . . . . . 9 {𝑏 ∈ ∅ ∣ 𝑎𝑏} =
12 int0 4455 . . . . . . . . 9 ∅ = V
1311, 12eqtri 2643 . . . . . . . 8 {𝑏 ∈ ∅ ∣ 𝑎𝑏} = V
1413eleq1i 2689 . . . . . . 7 ( {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V ↔ V ∈ V)
159, 14mtbir 313 . . . . . 6 ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
1615rgenw 2919 . . . . 5 𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V
17 rabeq0 3931 . . . . 5 ({𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅ ↔ ∀𝑎 ∈ 𝒫 ∅ ¬ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V)
1816, 17mpbir 221 . . . 4 {𝑎 ∈ 𝒫 ∅ ∣ {𝑏 ∈ ∅ ∣ 𝑎𝑏} ∈ V} = ∅
198, 18eqtri 2643 . . 3 dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
20 funmpt 5884 . . . . 5 Fun (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
21 funrel 5864 . . . . 5 (Fun (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) → Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}))
2220, 21ax-mp 5 . . . 4 Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏})
23 reldm0 5303 . . . 4 (Rel (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) → ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅))
2422, 23ax-mp 5 . . 3 ((𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅ ↔ dom (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅)
2519, 24mpbir 221 . 2 (𝑎 ∈ 𝒫 ∅ ↦ {𝑏 ∈ ∅ ∣ 𝑎𝑏}) = ∅
266, 25eqtr2i 2644 1 ∅ = (LSpan‘∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  wss 3555  c0 3891  𝒫 cpw 4130   cint 4440  cmpt 4673  dom cdm 5074  Rel wrel 5079  Fun wfun 5841  cfv 5847  LSpanclspn 18890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-slot 15785  df-base 15786  df-lss 18852  df-lsp 18891
This theorem is referenced by:  rspval  19112
  Copyright terms: Public domain W3C validator