Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xppss12 Structured version   Visualization version   GIF version

Theorem xppss12 39164
Description: Proper subset theorem for Cartesian product. (Contributed by Steven Nguyen, 17-Jul-2022.)
Assertion
Ref Expression
xppss12 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))

Proof of Theorem xppss12
StepHypRef Expression
1 pssss 4072 . . 3 (𝐴𝐵𝐴𝐵)
2 pssss 4072 . . 3 (𝐶𝐷𝐶𝐷)
3 xpss12 5570 . . 3 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
41, 2, 3syl2an 597 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐷))
5 simpl 485 . . . . 5 ((𝐴𝐵𝐶𝐷) → 𝐴𝐵)
6 pssne 4073 . . . . . 6 (𝐴𝐵𝐴𝐵)
76necomd 3071 . . . . 5 (𝐴𝐵𝐵𝐴)
8 neneq 3022 . . . . . 6 (𝐵𝐴 → ¬ 𝐵 = 𝐴)
98intnanrd 492 . . . . 5 (𝐵𝐴 → ¬ (𝐵 = 𝐴𝐷 = 𝐶))
105, 7, 93syl 18 . . . 4 ((𝐴𝐵𝐶𝐷) → ¬ (𝐵 = 𝐴𝐷 = 𝐶))
11 pssn0 39162 . . . . 5 (𝐴𝐵𝐵 ≠ ∅)
12 pssn0 39162 . . . . 5 (𝐶𝐷𝐷 ≠ ∅)
13 xp11 6032 . . . . 5 ((𝐵 ≠ ∅ ∧ 𝐷 ≠ ∅) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴𝐷 = 𝐶)))
1411, 12, 13syl2an 597 . . . 4 ((𝐴𝐵𝐶𝐷) → ((𝐵 × 𝐷) = (𝐴 × 𝐶) ↔ (𝐵 = 𝐴𝐷 = 𝐶)))
1510, 14mtbird 327 . . 3 ((𝐴𝐵𝐶𝐷) → ¬ (𝐵 × 𝐷) = (𝐴 × 𝐶))
16 neqne 3024 . . . 4 (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐵 × 𝐷) ≠ (𝐴 × 𝐶))
1716necomd 3071 . . 3 (¬ (𝐵 × 𝐷) = (𝐴 × 𝐶) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))
1815, 17syl 17 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ≠ (𝐵 × 𝐷))
19 df-pss 3954 . 2 ((𝐴 × 𝐶) ⊊ (𝐵 × 𝐷) ↔ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐷) ∧ (𝐴 × 𝐶) ≠ (𝐵 × 𝐷)))
204, 18, 19sylanbrc 585 1 ((𝐴𝐵𝐶𝐷) → (𝐴 × 𝐶) ⊊ (𝐵 × 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wne 3016  wss 3936  wpss 3937  c0 4291   × cxp 5553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-dm 5565  df-rn 5566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator