| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > anval | Unicode version | ||
| Description: Value of the conjunction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| imval.1 |
|
| imval.2 |
|
| Ref | Expression |
|---|---|
| anval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wan 136 |
. . 3
| |
| 2 | imval.1 |
. . 3
| |
| 3 | imval.2 |
. . 3
| |
| 4 | 1, 2, 3 | wov 72 |
. 2
|
| 5 | df-an 128 |
. . 3
| |
| 6 | 1, 2, 3, 5 | oveq 102 |
. 2
|
| 7 | wv 64 |
. . . . . 6
| |
| 8 | wv 64 |
. . . . . 6
| |
| 9 | wv 64 |
. . . . . 6
| |
| 10 | 7, 8, 9 | wov 72 |
. . . . 5
|
| 11 | 10 | wl 66 |
. . . 4
|
| 12 | wtru 43 |
. . . . . 6
| |
| 13 | 7, 12, 12 | wov 72 |
. . . . 5
|
| 14 | 13 | wl 66 |
. . . 4
|
| 15 | 11, 14 | weqi 76 |
. . 3
|
| 16 | weq 41 |
. . . 4
| |
| 17 | 8, 2 | weqi 76 |
. . . . . . 7
|
| 18 | 17 | id 25 |
. . . . . 6
|
| 19 | 7, 8, 9, 18 | oveq1 99 |
. . . . 5
|
| 20 | 10, 19 | leq 91 |
. . . 4
|
| 21 | 16, 11, 14, 20 | oveq1 99 |
. . 3
|
| 22 | 7, 2, 9 | wov 72 |
. . . . 5
|
| 23 | 22 | wl 66 |
. . . 4
|
| 24 | 9, 3 | weqi 76 |
. . . . . . 7
|
| 25 | 24 | id 25 |
. . . . . 6
|
| 26 | 7, 2, 9, 25 | oveq2 101 |
. . . . 5
|
| 27 | 22, 26 | leq 91 |
. . . 4
|
| 28 | 16, 23, 14, 27 | oveq1 99 |
. . 3
|
| 29 | 15, 2, 3, 21, 28 | ovl 117 |
. 2
|
| 30 | 4, 6, 29 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 |
| This theorem is referenced by: dfan2 154 |
| Copyright terms: Public domain | W3C validator |