HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax8 Unicode version

Theorem ax8 211
Description: Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypotheses
Ref Expression
ax8.1 |- A:al
ax8.2 |- B:al
ax8.3 |- C:al
Assertion
Ref Expression
ax8 |- T. |= [[A = B] ==> [[A = C] ==> [B = C]]]

Proof of Theorem ax8
StepHypRef Expression
1 ax8.2 . . . . 5 |- B:al
2 ax8.1 . . . . . 6 |- A:al
32, 1weqi 76 . . . . . . 7 |- [A = B]:*
4 ax8.3 . . . . . . . 8 |- C:al
52, 4weqi 76 . . . . . . 7 |- [A = C]:*
63, 5simpl 22 . . . . . 6 |- ([A = B], [A = C]) |= [A = B]
72, 6eqcomi 79 . . . . 5 |- ([A = B], [A = C]) |= [B = A]
83, 5simpr 23 . . . . 5 |- ([A = B], [A = C]) |= [A = C]
91, 7, 8eqtri 95 . . . 4 |- ([A = B], [A = C]) |= [B = C]
109ex 158 . . 3 |- [A = B] |= [[A = C] ==> [B = C]]
11 wtru 43 . . 3 |- T.:*
1210, 11adantl 56 . 2 |- (T., [A = B]) |= [[A = C] ==> [B = C]]
1312ex 158 1 |- T. |= [[A = B] ==> [[A = C] ==> [B = C]]]
Colors of variables: type var term
Syntax hints:   = ke 7  T.kt 8  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-an 128  df-im 129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator