| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ax8 | Unicode version | ||
| Description: Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| ax8.1 |
|
| ax8.2 |
|
| ax8.3 |
|
| Ref | Expression |
|---|---|
| ax8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax8.2 |
. . . . 5
| |
| 2 | ax8.1 |
. . . . . 6
| |
| 3 | 2, 1 | weqi 76 |
. . . . . . 7
|
| 4 | ax8.3 |
. . . . . . . 8
| |
| 5 | 2, 4 | weqi 76 |
. . . . . . 7
|
| 6 | 3, 5 | simpl 22 |
. . . . . 6
|
| 7 | 2, 6 | eqcomi 79 |
. . . . 5
|
| 8 | 3, 5 | simpr 23 |
. . . . 5
|
| 9 | 1, 7, 8 | eqtri 95 |
. . . 4
|
| 10 | 9 | ex 158 |
. . 3
|
| 11 | wtru 43 |
. . 3
| |
| 12 | 10, 11 | adantl 56 |
. 2
|
| 13 | 12 | ex 158 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 df-im 129 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |