Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax9 | Unicode version |
Description: Axiom of Equality. Axiom scheme C8' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Axiom C7 of [Monk2] p. 105. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
ax9.1 |
Ref | Expression |
---|---|
ax9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . . . 6 | |
2 | ax9.1 | . . . . . 6 | |
3 | 1, 2 | weqi 76 | . . . . 5 |
4 | 3 | 19.8a 170 | . . . 4 |
5 | wex 139 | . . . . 5 | |
6 | 3 | wl 66 | . . . . 5 |
7 | wv 64 | . . . . 5 | |
8 | 5, 7 | ax-17 105 | . . . . 5 |
9 | 3, 7 | ax-hbl1 103 | . . . . 5 |
10 | 5, 6, 7, 8, 9 | hbc 110 | . . . 4 |
11 | wtru 43 | . . . . 5 | |
12 | 11, 7 | ax-17 105 | . . . 4 |
13 | 5, 6 | wc 50 | . . . . 5 |
14 | 3, 13 | eqid 83 | . . . 4 |
15 | 3 | id 25 | . . . . . 6 |
16 | 15 | eqtru 86 | . . . . 5 |
17 | 11, 16 | eqcomi 79 | . . . 4 |
18 | 4, 10, 12, 14, 17 | ax-inst 113 | . . 3 |
19 | 13 | notnot1 160 | . . 3 |
20 | 18, 19 | syl 16 | . 2 |
21 | wnot 138 | . . 3 | |
22 | wal 134 | . . . 4 | |
23 | 21, 3 | wc 50 | . . . . 5 |
24 | 23 | wl 66 | . . . 4 |
25 | 22, 24 | wc 50 | . . 3 |
26 | 3 | alnex 186 | . . 3 |
27 | 21, 25, 26 | ceq2 90 | . 2 |
28 | 20, 27 | mpbir 87 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 tne 120 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 ax-eta 177 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 df-ex 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |