| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > con3d | Unicode version | ||
| Description: A contraposition deduction. (Contributed by Mario Carneiro, 10-Oct-2014.) |
| Ref | Expression |
|---|---|
| con3d.1 |
|
| Ref | Expression |
|---|---|
| con3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wnot 138 |
. . 3
| |
| 2 | con3d.1 |
. . . 4
| |
| 3 | 2 | ax-cb2 30 |
. . 3
|
| 4 | 1, 3 | wc 50 |
. 2
|
| 5 | 3 | notnot1 160 |
. . 3
|
| 6 | 2, 5 | syl 16 |
. 2
|
| 7 | 4, 6 | con2d 161 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
| This theorem is referenced by: alnex 186 |
| Copyright terms: Public domain | W3C validator |