HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  con3d GIF version

Theorem con3d 162
Description: A contraposition deduction. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
con3d.1 (R, S)⊧T
Assertion
Ref Expression
con3d (R, (¬ T))⊧(¬ S)

Proof of Theorem con3d
StepHypRef Expression
1 wnot 138 . . 3 ¬ :(∗ → ∗)
2 con3d.1 . . . 4 (R, S)⊧T
32ax-cb2 30 . . 3 T:∗
41, 3wc 50 . 2 T):∗
53notnot1 160 . . 3 T⊧(¬ (¬ T))
62, 5syl 16 . 2 (R, S)⊧(¬ (¬ T))
74, 6con2d 161 1 (R, (¬ T))⊧(¬ S)
Colors of variables: type var term
Syntax hints:  hb 3  kc 5  kct 10  wffMMJ2 11  ¬ tne 120
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130
This theorem is referenced by:  alnex  186
  Copyright terms: Public domain W3C validator