Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > con3d | GIF version |
Description: A contraposition deduction. (Contributed by Mario Carneiro, 10-Oct-2014.) |
Ref | Expression |
---|---|
con3d.1 | ⊢ (R, S)⊧T |
Ref | Expression |
---|---|
con3d | ⊢ (R, (¬ T))⊧(¬ S) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wnot 138 | . . 3 ⊢ ¬ :(∗ → ∗) | |
2 | con3d.1 | . . . 4 ⊢ (R, S)⊧T | |
3 | 2 | ax-cb2 30 | . . 3 ⊢ T:∗ |
4 | 1, 3 | wc 50 | . 2 ⊢ (¬ T):∗ |
5 | 3 | notnot1 160 | . . 3 ⊢ T⊧(¬ (¬ T)) |
6 | 2, 5 | syl 16 | . 2 ⊢ (R, S)⊧(¬ (¬ T)) |
7 | 4, 6 | con2d 161 | 1 ⊢ (R, (¬ T))⊧(¬ S) |
Colors of variables: type var term |
Syntax hints: ∗hb 3 kc 5 kct 10 ⊧wffMMJ2 11 ¬ tne 120 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
This theorem is referenced by: alnex 186 |
Copyright terms: Public domain | W3C validator |