| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wnot | Unicode version | ||
| Description: Negation type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| wnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wim 137 |
. . . 4
| |
| 2 | wv 64 |
. . . 4
| |
| 3 | wfal 135 |
. . . 4
| |
| 4 | 1, 2, 3 | wov 72 |
. . 3
|
| 5 | 4 | wl 66 |
. 2
|
| 6 | df-not 130 |
. 2
| |
| 7 | 5, 6 | eqtypri 81 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
| This theorem depends on definitions: df-al 126 df-fal 127 df-an 128 df-im 129 df-not 130 |
| This theorem is referenced by: notval 145 notval2 159 notnot1 160 con3d 162 alnex 186 exnal1 187 exmid 199 notnot 200 exnal 201 ax3 205 ax6 208 ax9 212 ax12 215 |
| Copyright terms: Public domain | W3C validator |