HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  wnot Unicode version

Theorem wnot 138
Description: Negation type. (Contributed by Mario Carneiro, 8-Oct-2014.)
Assertion
Ref Expression
wnot |- ~ :(* -> *)

Proof of Theorem wnot
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 wim 137 . . . 4 |- ==> :(* -> (* -> *))
2 wv 64 . . . 4 |- p:*:*
3 wfal 135 . . . 4 |- F.:*
41, 2, 3wov 72 . . 3 |- [p:* ==> F.]:*
54wl 66 . 2 |- \p:* [p:* ==> F.]:(* -> *)
6 df-not 130 . 2 |- T. |= [~ = \p:* [p:* ==> F.]]
75, 6eqtypri 81 1 |- ~ :(* -> *)
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  \kl 6  T.kt 8  [kbr 9  wffMMJ2t 12  F.tfal 118  ~ tne 120   ==> tim 121
This theorem was proved from axioms:  ax-cb1 29  ax-weq 40  ax-refl 42  ax-wc 49  ax-wv 63  ax-wl 65  ax-wov 71  ax-eqtypri 80
This theorem depends on definitions:  df-al 126  df-fal 127  df-an 128  df-im 129  df-not 130
This theorem is referenced by:  notval  145  notval2  159  notnot1  160  con3d  162  alnex  186  exnal1  187  exmid  199  notnot  200  exnal  201  ax3  205  ax6  208  ax9  212  ax12  215
  Copyright terms: Public domain W3C validator