HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ecase Unicode version

Theorem ecase 163
Description: Elimination by cases. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
ecase.1 |- A:*
ecase.2 |- B:*
ecase.3 |- T:*
ecase.4 |- R |= [A \/ B]
ecase.5 |- (R, A) |= T
ecase.6 |- (R, B) |= T
Assertion
Ref Expression
ecase |- R |= T

Proof of Theorem ecase
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 ecase.3 . 2 |- T:*
2 ecase.6 . . 3 |- (R, B) |= T
32ex 158 . 2 |- R |= [B ==> T]
4 wim 137 . . . 4 |- ==> :(* -> (* -> *))
5 ecase.2 . . . . 5 |- B:*
64, 5, 1wov 72 . . . 4 |- [B ==> T]:*
74, 6, 1wov 72 . . 3 |- [[B ==> T] ==> T]:*
8 ecase.5 . . . 4 |- (R, A) |= T
98ex 158 . . 3 |- R |= [A ==> T]
10 ecase.4 . . . . 5 |- R |= [A \/ B]
1110ax-cb1 29 . . . . . 6 |- R:*
12 ecase.1 . . . . . . 7 |- A:*
1312, 5orval 147 . . . . . 6 |- T. |= [[A \/ B] = (A.\x:* [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]])]
1411, 13a1i 28 . . . . 5 |- R |= [[A \/ B] = (A.\x:* [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]])]
1510, 14mpbi 82 . . . 4 |- R |= (A.\x:* [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]])
16 wv 64 . . . . . . 7 |- x:*:*
174, 12, 16wov 72 . . . . . 6 |- [A ==> x:*]:*
184, 5, 16wov 72 . . . . . . 7 |- [B ==> x:*]:*
194, 18, 16wov 72 . . . . . 6 |- [[B ==> x:*] ==> x:*]:*
204, 17, 19wov 72 . . . . 5 |- [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]]:*
2116, 1weqi 76 . . . . . . . 8 |- [x:* = T]:*
2221id 25 . . . . . . 7 |- [x:* = T] |= [x:* = T]
234, 12, 16, 22oveq2 101 . . . . . 6 |- [x:* = T] |= [[A ==> x:*] = [A ==> T]]
244, 5, 16, 22oveq2 101 . . . . . . 7 |- [x:* = T] |= [[B ==> x:*] = [B ==> T]]
254, 18, 16, 24, 22oveq12 100 . . . . . 6 |- [x:* = T] |= [[[B ==> x:*] ==> x:*] = [[B ==> T] ==> T]]
264, 17, 19, 23, 25oveq12 100 . . . . 5 |- [x:* = T] |= [[[A ==> x:*] ==> [[B ==> x:*] ==> x:*]] = [[A ==> T] ==> [[B ==> T] ==> T]]]
2720, 1, 26cla4v 152 . . . 4 |- (A.\x:* [[A ==> x:*] ==> [[B ==> x:*] ==> x:*]]) |= [[A ==> T] ==> [[B ==> T] ==> T]]
2815, 27syl 16 . . 3 |- R |= [[A ==> T] ==> [[B ==> T] ==> T]]
297, 9, 28mpd 156 . 2 |- R |= [[B ==> T] ==> T]
301, 3, 29mpd 156 1 |- R |= T
Colors of variables: type var term
Syntax hints:  tv 1  *hb 3  kc 5  \kl 6   = ke 7  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122   \/ tor 124
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-or 132
This theorem is referenced by:  exmid  199  notnot  200  ax3  205
  Copyright terms: Public domain W3C validator