HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  hbov Unicode version

Theorem hbov 111
Description: Hypothesis builder for binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
hbov.1 |- F:(be -> (ga -> de))
hbov.2 |- A:be
hbov.3 |- B:al
hbov.4 |- C:ga
hbov.5 |- R |= [(\x:al FB) = F]
hbov.6 |- R |= [(\x:al AB) = A]
hbov.7 |- R |= [(\x:al CB) = C]
Assertion
Ref Expression
hbov |- R |= [(\x:al [AFC]B) = [AFC]]

Proof of Theorem hbov
StepHypRef Expression
1 hbov.5 . . . 4 |- R |= [(\x:al FB) = F]
21ax-cb1 29 . . 3 |- R:*
32trud 27 . 2 |- R |= T.
4 hbov.1 . . . 4 |- F:(be -> (ga -> de))
5 hbov.2 . . . 4 |- A:be
6 hbov.4 . . . 4 |- C:ga
74, 5, 6wov 72 . . 3 |- [AFC]:de
8 hbov.3 . . 3 |- B:al
9 weq 41 . . . 4 |- = :(de -> (de -> *))
104, 5wc 50 . . . . 5 |- (FA):(ga -> de)
1110, 6wc 50 . . . 4 |- ((FA)C):de
124, 5, 6df-ov 73 . . . 4 |- T. |= (( = [AFC])((FA)C))
139, 7, 11, 12dfov2 75 . . 3 |- T. |= [[AFC] = ((FA)C)]
14 hbov.6 . . . . . 6 |- R |= [(\x:al AB) = A]
154, 5, 8, 1, 14hbc 110 . . . . 5 |- R |= [(\x:al (FA)B) = (FA)]
16 hbov.7 . . . . 5 |- R |= [(\x:al CB) = C]
1710, 6, 8, 15, 16hbc 110 . . . 4 |- R |= [(\x:al ((FA)C)B) = ((FA)C)]
18 wtru 43 . . . 4 |- T.:*
1917, 18adantr 55 . . 3 |- (R, T.) |= [(\x:al ((FA)C)B) = ((FA)C)]
207, 8, 13, 19hbxfrf 107 . 2 |- (R, T.) |= [(\x:al [AFC]B) = [AFC]]
213, 20mpdan 35 1 |- R |= [(\x:al [AFC]B) = [AFC]]
Colors of variables: type var term
Syntax hints:   -> ht 2  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wl 65  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  clf  115  hbct  155  exlimdv  167  cbvf  179  leqf  181  exlimd  183  exmid  199  axrep  220
  Copyright terms: Public domain W3C validator