| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbov | Unicode version | ||
| Description: Hypothesis builder for binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbov.1 |
|
| hbov.2 |
|
| hbov.3 |
|
| hbov.4 |
|
| hbov.5 |
|
| hbov.6 |
|
| hbov.7 |
|
| Ref | Expression |
|---|---|
| hbov |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbov.5 |
. . . 4
| |
| 2 | 1 | ax-cb1 29 |
. . 3
|
| 3 | 2 | trud 27 |
. 2
|
| 4 | hbov.1 |
. . . 4
| |
| 5 | hbov.2 |
. . . 4
| |
| 6 | hbov.4 |
. . . 4
| |
| 7 | 4, 5, 6 | wov 72 |
. . 3
|
| 8 | hbov.3 |
. . 3
| |
| 9 | weq 41 |
. . . 4
| |
| 10 | 4, 5 | wc 50 |
. . . . 5
|
| 11 | 10, 6 | wc 50 |
. . . 4
|
| 12 | 4, 5, 6 | df-ov 73 |
. . . 4
|
| 13 | 9, 7, 11, 12 | dfov2 75 |
. . 3
|
| 14 | hbov.6 |
. . . . . 6
| |
| 15 | 4, 5, 8, 1, 14 | hbc 110 |
. . . . 5
|
| 16 | hbov.7 |
. . . . 5
| |
| 17 | 10, 6, 8, 15, 16 | hbc 110 |
. . . 4
|
| 18 | wtru 43 |
. . . 4
| |
| 19 | 17, 18 | adantr 55 |
. . 3
|
| 20 | 7, 8, 13, 19 | hbxfrf 107 |
. 2
|
| 21 | 3, 20 | mpdan 35 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: clf 115 hbct 155 exlimdv 167 cbvf 179 leqf 181 exlimd 183 exmid 199 axrep 220 |
| Copyright terms: Public domain | W3C validator |