HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ovl Unicode version

Theorem ovl 117
Description: Evaluate a lambda expression in a binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
ovl.1 |- A:ga
ovl.2 |- S:al
ovl.3 |- T:be
ovl.4 |- [x:al = S] |= [A = B]
ovl.5 |- [y:be = T] |= [B = C]
Assertion
Ref Expression
ovl |- T. |= [[S\x:al \y:be AT] = C]
Distinct variable groups:   x,B   y,C   x,y,S   y,T   al,x   be,y

Proof of Theorem ovl
StepHypRef Expression
1 ovl.1 . . . . 5 |- A:ga
21wl 66 . . . 4 |- \y:be A:(be -> ga)
32wl 66 . . 3 |- \x:al \y:be A:(al -> (be -> ga))
4 ovl.2 . . 3 |- S:al
5 ovl.3 . . 3 |- T:be
63, 4, 5wov 72 . 2 |- [S\x:al \y:be AT]:ga
7 weq 41 . . . 4 |- = :(ga -> (ga -> *))
83, 4wc 50 . . . . 5 |- (\x:al \y:be AS):(be -> ga)
98, 5wc 50 . . . 4 |- ((\x:al \y:be AS)T):ga
10 wtru 43 . . . . 5 |- T.:*
113, 4, 5df-ov 73 . . . . 5 |- T. |= (( = [S\x:al \y:be AT])((\x:al \y:be AS)T))
1210, 11a1i 28 . . . 4 |- T. |= (( = [S\x:al \y:be AT])((\x:al \y:be AS)T))
137, 6, 9, 12dfov2 75 . . 3 |- T. |= [[S\x:al \y:be AT] = ((\x:al \y:be AS)T)]
141, 4distrl 94 . . . . 5 |- T. |= [(\x:al \y:be AS) = \y:be (\x:al AS)]
1510, 14a1i 28 . . . 4 |- T. |= [(\x:al \y:be AS) = \y:be (\x:al AS)]
168, 5, 15ceq1 89 . . 3 |- T. |= [((\x:al \y:be AS)T) = (\y:be (\x:al AS)T)]
176, 13, 16eqtri 95 . 2 |- T. |= [[S\x:al \y:be AT] = (\y:be (\x:al AS)T)]
181wl 66 . . . 4 |- \x:al A:(al -> ga)
1918, 4wc 50 . . 3 |- (\x:al AS):ga
20 wv 64 . . . . . 6 |- y:be:be
2120, 5weqi 76 . . . . 5 |- [y:be = T]:*
22 ovl.4 . . . . . 6 |- [x:al = S] |= [A = B]
231, 4, 22cl 116 . . . . 5 |- T. |= [(\x:al AS) = B]
2421, 23a1i 28 . . . 4 |- [y:be = T] |= [(\x:al AS) = B]
25 ovl.5 . . . 4 |- [y:be = T] |= [B = C]
2619, 24, 25eqtri 95 . . 3 |- [y:be = T] |= [(\x:al AS) = C]
2719, 5, 26cl 116 . 2 |- T. |= [(\y:be (\x:al AS)T) = C]
286, 17, 27eqtri 95 1 |- T. |= [[S\x:al \y:be AT] = C]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  imval  146  orval  147  anval  148  dfan2  154
  Copyright terms: Public domain W3C validator