Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ovl | Unicode version |
Description: Evaluate a lambda expression in a binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
ovl.1 | |
ovl.2 | |
ovl.3 | |
ovl.4 | |
ovl.5 |
Ref | Expression |
---|---|
ovl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovl.1 | . . . . 5 | |
2 | 1 | wl 66 | . . . 4 |
3 | 2 | wl 66 | . . 3 |
4 | ovl.2 | . . 3 | |
5 | ovl.3 | . . 3 | |
6 | 3, 4, 5 | wov 72 | . 2 |
7 | weq 41 | . . . 4 | |
8 | 3, 4 | wc 50 | . . . . 5 |
9 | 8, 5 | wc 50 | . . . 4 |
10 | wtru 43 | . . . . 5 | |
11 | 3, 4, 5 | df-ov 73 | . . . . 5 |
12 | 10, 11 | a1i 28 | . . . 4 |
13 | 7, 6, 9, 12 | dfov2 75 | . . 3 |
14 | 1, 4 | distrl 94 | . . . . 5 |
15 | 10, 14 | a1i 28 | . . . 4 |
16 | 8, 5, 15 | ceq1 89 | . . 3 |
17 | 6, 13, 16 | eqtri 95 | . 2 |
18 | 1 | wl 66 | . . . 4 |
19 | 18, 4 | wc 50 | . . 3 |
20 | wv 64 | . . . . . 6 | |
21 | 20, 5 | weqi 76 | . . . . 5 |
22 | ovl.4 | . . . . . 6 | |
23 | 1, 4, 22 | cl 116 | . . . . 5 |
24 | 21, 23 | a1i 28 | . . . 4 |
25 | ovl.5 | . . . 4 | |
26 | 19, 24, 25 | eqtri 95 | . . 3 |
27 | 19, 5, 26 | cl 116 | . 2 |
28 | 6, 17, 27 | eqtri 95 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: imval 146 orval 147 anval 148 dfan2 154 |
Copyright terms: Public domain | W3C validator |