| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > ovl | Unicode version | ||
| Description: Evaluate a lambda expression in a binary operation. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| ovl.1 |
|
| ovl.2 |
|
| ovl.3 |
|
| ovl.4 |
|
| ovl.5 |
|
| Ref | Expression |
|---|---|
| ovl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovl.1 |
. . . . 5
| |
| 2 | 1 | wl 66 |
. . . 4
|
| 3 | 2 | wl 66 |
. . 3
|
| 4 | ovl.2 |
. . 3
| |
| 5 | ovl.3 |
. . 3
| |
| 6 | 3, 4, 5 | wov 72 |
. 2
|
| 7 | weq 41 |
. . . 4
| |
| 8 | 3, 4 | wc 50 |
. . . . 5
|
| 9 | 8, 5 | wc 50 |
. . . 4
|
| 10 | wtru 43 |
. . . . 5
| |
| 11 | 3, 4, 5 | df-ov 73 |
. . . . 5
|
| 12 | 10, 11 | a1i 28 |
. . . 4
|
| 13 | 7, 6, 9, 12 | dfov2 75 |
. . 3
|
| 14 | 1, 4 | distrl 94 |
. . . . 5
|
| 15 | 10, 14 | a1i 28 |
. . . 4
|
| 16 | 8, 5, 15 | ceq1 89 |
. . 3
|
| 17 | 6, 13, 16 | eqtri 95 |
. 2
|
| 18 | 1 | wl 66 |
. . . 4
|
| 19 | 18, 4 | wc 50 |
. . 3
|
| 20 | wv 64 |
. . . . . 6
| |
| 21 | 20, 5 | weqi 76 |
. . . . 5
|
| 22 | ovl.4 |
. . . . . 6
| |
| 23 | 1, 4, 22 | cl 116 |
. . . . 5
|
| 24 | 21, 23 | a1i 28 |
. . . 4
|
| 25 | ovl.5 |
. . . 4
| |
| 26 | 19, 24, 25 | eqtri 95 |
. . 3
|
| 27 | 19, 5, 26 | cl 116 |
. 2
|
| 28 | 6, 17, 27 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: imval 146 orval 147 anval 148 dfan2 154 |
| Copyright terms: Public domain | W3C validator |