HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  beta Unicode version

Theorem beta 92
Description: Axiom of beta-substitution. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypothesis
Ref Expression
beta.1 |- A:be
Assertion
Ref Expression
beta |- T. |= [(\x:al Ax:al) = A]

Proof of Theorem beta
StepHypRef Expression
1 weq 41 . 2 |- = :(be -> (be -> *))
2 beta.1 . . . 4 |- A:be
32wl 66 . . 3 |- \x:al A:(al -> be)
4 wv 64 . . 3 |- x:al:al
53, 4wc 50 . 2 |- (\x:al Ax:al):be
62ax-beta 67 . 2 |- T. |= (( = (\x:al Ax:al))A)
71, 5, 2, 6dfov2 75 1 |- T. |= [(\x:al Ax:al) = A]
Colors of variables: type var term
Syntax hints:  tv 1  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-wov 71
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  clf  115  ax4  150  exlimdv  167  19.8a  170  cbvf  179  leqf  181  exlimd  183  ax11  214  axrep  220
  Copyright terms: Public domain W3C validator