Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbl | Unicode version |
Description: Hypothesis builder for lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
hbl.1 | |
hbl.2 | |
hbl.3 |
Ref | Expression |
---|---|
hbl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbl.1 | . . . . 5 | |
2 | 1 | wl 66 | . . . 4 |
3 | 2 | wl 66 | . . 3 |
4 | hbl.2 | . . 3 | |
5 | 3, 4 | wc 50 | . 2 |
6 | hbl.3 | . . . 4 | |
7 | 6 | ax-cb1 29 | . . 3 |
8 | 1, 4 | distrl 94 | . . 3 |
9 | 7, 8 | a1i 28 | . 2 |
10 | 1 | wl 66 | . . . 4 |
11 | 10, 4 | wc 50 | . . 3 |
12 | 11, 6 | leq 91 | . 2 |
13 | 5, 9, 12 | eqtri 95 | 1 |
Colors of variables: type var term |
Syntax hints: ht 2 kc 5 kl 6 ke 7 kbr 9 wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: cbvf 179 ax7 209 axrep 220 |
Copyright terms: Public domain | W3C validator |