| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > hbl | Unicode version | ||
| Description: Hypothesis builder for lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| hbl.1 |
|
| hbl.2 |
|
| hbl.3 |
|
| Ref | Expression |
|---|---|
| hbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbl.1 |
. . . . 5
| |
| 2 | 1 | wl 66 |
. . . 4
|
| 3 | 2 | wl 66 |
. . 3
|
| 4 | hbl.2 |
. . 3
| |
| 5 | 3, 4 | wc 50 |
. 2
|
| 6 | hbl.3 |
. . . 4
| |
| 7 | 6 | ax-cb1 29 |
. . 3
|
| 8 | 1, 4 | distrl 94 |
. . 3
|
| 9 | 7, 8 | a1i 28 |
. 2
|
| 10 | 1 | wl 66 |
. . . 4
|
| 11 | 10, 4 | wc 50 |
. . 3
|
| 12 | 11, 6 | leq 91 |
. 2
|
| 13 | 5, 9, 12 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: |
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 |
| This theorem depends on definitions: df-ov 73 |
| This theorem is referenced by: cbvf 179 ax7 209 axrep 220 |
| Copyright terms: Public domain | W3C validator |