HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  hbl Unicode version

Theorem hbl 112
Description: Hypothesis builder for lambda abstraction. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
hbl.1 |- A:ga
hbl.2 |- B:al
hbl.3 |- R |= [(\x:al AB) = A]
Assertion
Ref Expression
hbl |- R |= [(\x:al \y:be AB) = \y:be A]
Distinct variable groups:   x,y   y,B   y,R

Proof of Theorem hbl
StepHypRef Expression
1 hbl.1 . . . . 5 |- A:ga
21wl 66 . . . 4 |- \y:be A:(be -> ga)
32wl 66 . . 3 |- \x:al \y:be A:(al -> (be -> ga))
4 hbl.2 . . 3 |- B:al
53, 4wc 50 . 2 |- (\x:al \y:be AB):(be -> ga)
6 hbl.3 . . . 4 |- R |= [(\x:al AB) = A]
76ax-cb1 29 . . 3 |- R:*
81, 4distrl 94 . . 3 |- T. |= [(\x:al \y:be AB) = \y:be (\x:al AB)]
97, 8a1i 28 . 2 |- R |= [(\x:al \y:be AB) = \y:be (\x:al AB)]
101wl 66 . . . 4 |- \x:al A:(al -> ga)
1110, 4wc 50 . . 3 |- (\x:al AB):ga
1211, 6leq 91 . 2 |- R |= [\y:be (\x:al AB) = \y:be A]
135, 9, 12eqtri 95 1 |- R |= [(\x:al \y:be AB) = \y:be A]
Colors of variables: type var term
Syntax hints:   -> ht 2  kc 5  \kl 6   = ke 7  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wl 65  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77
This theorem depends on definitions:  df-ov 73
This theorem is referenced by:  cbvf  179  ax7  209  axrep  220
  Copyright terms: Public domain W3C validator