Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > hbxfr | GIF version |
Description: Transfer a hypothesis builder to an equivalent expression. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
hbxfr.1 | ⊢ T:β |
hbxfr.2 | ⊢ B:α |
hbxfr.3 | ⊢ R⊧[T = A] |
hbxfr.4 | ⊢ R⊧[(λx:α AB) = A] |
Ref | Expression |
---|---|
hbxfr | ⊢ R⊧[(λx:α TB) = T] |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfr.3 | . . . 4 ⊢ R⊧[T = A] | |
2 | 1 | ax-cb1 29 | . . 3 ⊢ R:∗ |
3 | 2 | id 25 | . 2 ⊢ R⊧R |
4 | hbxfr.1 | . . 3 ⊢ T:β | |
5 | hbxfr.2 | . . 3 ⊢ B:α | |
6 | hbxfr.4 | . . . 4 ⊢ R⊧[(λx:α AB) = A] | |
7 | 6, 2 | adantr 55 | . . 3 ⊢ (R, R)⊧[(λx:α AB) = A] |
8 | 4, 5, 1, 7 | hbxfrf 107 | . 2 ⊢ (R, R)⊧[(λx:α TB) = T] |
9 | 3, 3, 8 | syl2anc 19 | 1 ⊢ R⊧[(λx:α TB) = T] |
Colors of variables: type var term |
Syntax hints: kc 5 λkl 6 = ke 7 [kbr 9 ⊧wffMMJ2 11 wffMMJ2t 12 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wl 65 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 |
This theorem depends on definitions: df-ov 73 |
This theorem is referenced by: hbth 109 |
Copyright terms: Public domain | W3C validator |