Proof of Theorem oveq123
| Step | Hyp | Ref
| Expression |
| 1 | | oveq.1 |
. . . 4
⊢ F:(α
→ (β → γ)) |
| 2 | | oveq.2 |
. . . 4
⊢ A:α |
| 3 | 1, 2 | wc 50 |
. . 3
⊢ (FA):(β → γ) |
| 4 | | oveq.3 |
. . 3
⊢ B:β |
| 5 | 3, 4 | wc 50 |
. 2
⊢ ((FA)B):γ |
| 6 | | oveq123.4 |
. . . 4
⊢ R⊧[F =
S] |
| 7 | | oveq123.5 |
. . . 4
⊢ R⊧[A =
C] |
| 8 | 1, 2, 6, 7 | ceq12 88 |
. . 3
⊢ R⊧[(FA) = (SC)] |
| 9 | | oveq123.6 |
. . 3
⊢ R⊧[B =
T] |
| 10 | 3, 4, 8, 9 | ceq12 88 |
. 2
⊢ R⊧[((FA)B) = ((SC)T)] |
| 11 | | weq 41 |
. . 3
⊢ = :(γ → (γ → ∗)) |
| 12 | 1, 2, 4 | wov 72 |
. . 3
⊢ [AFB]:γ |
| 13 | 6 | ax-cb1 29 |
. . . 4
⊢ R:∗ |
| 14 | 1, 2, 4 | df-ov 73 |
. . . 4
⊢ ⊤⊧(( =
[AFB])((FA)B)) |
| 15 | 13, 14 | a1i 28 |
. . 3
⊢ R⊧(( = [AFB])((FA)B)) |
| 16 | 11, 12, 5, 15 | dfov2 75 |
. 2
⊢ R⊧[[AFB] = ((FA)B)] |
| 17 | 1, 6 | eqtypi 78 |
. . . 4
⊢ S:(α
→ (β → γ)) |
| 18 | 2, 7 | eqtypi 78 |
. . . 4
⊢ C:α |
| 19 | 4, 9 | eqtypi 78 |
. . . 4
⊢ T:β |
| 20 | 17, 18, 19 | wov 72 |
. . 3
⊢ [CST]:γ |
| 21 | 17, 18 | wc 50 |
. . . 4
⊢ (SC):(β → γ) |
| 22 | 21, 19 | wc 50 |
. . 3
⊢ ((SC)T):γ |
| 23 | 17, 18, 19 | df-ov 73 |
. . . 4
⊢ ⊤⊧(( =
[CST])((SC)T)) |
| 24 | 13, 23 | a1i 28 |
. . 3
⊢ R⊧(( = [CST])((SC)T)) |
| 25 | 11, 20, 22, 24 | dfov2 75 |
. 2
⊢ R⊧[[CST] = ((SC)T)] |
| 26 | 5, 10, 16, 25 | 3eqtr4i 96 |
1
⊢ R⊧[[AFB] = [CST]] |