![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > oveq1 | Unicode version |
Description: Equality theorem for binary operation. |
Ref | Expression |
---|---|
oveq.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
oveq.2 |
![]() ![]() ![]() ![]() |
oveq.3 |
![]() ![]() ![]() ![]() |
oveq1.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
oveq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | oveq.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | oveq.3 |
. 2
![]() ![]() ![]() ![]() | |
4 | oveq1.4 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | ax-cb1 29 |
. . 3
![]() ![]() ![]() ![]() |
6 | 5, 1 | eqid 73 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 5, 3 | eqid 73 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 3, 6, 4, 7 | oveq123 88 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ceq 46 |
This theorem depends on definitions: df-ov 65 |
This theorem is referenced by: alval 132 exval 133 euval 134 notval 135 imval 136 orval 137 anval 138 exlimdv 157 ax4e 158 exlimd 171 ac 184 exmid 186 ax10 200 axrep 207 |
Copyright terms: Public domain | W3C validator |