Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  weu Unicode version

Theorem weu 141
 Description: There exists unique type. (Contributed by Mario Carneiro, 8-Oct-2014.)
Assertion
Ref Expression
weu

Proof of Theorem weu
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wex 139 . . . 4
2 wal 134 . . . . . 6
3 wv 64 . . . . . . . . 9
4 wv 64 . . . . . . . . 9
53, 4wc 50 . . . . . . . 8
6 wv 64 . . . . . . . . 9
74, 6weqi 76 . . . . . . . 8
85, 7weqi 76 . . . . . . 7
98wl 66 . . . . . 6
102, 9wc 50 . . . . 5
1110wl 66 . . . 4
121, 11wc 50 . . 3
1312wl 66 . 2
14 df-eu 133 . 2
1513, 14eqtypri 81 1
 Colors of variables: type var term Syntax hints:  tv 1   ht 2  hb 3  kc 5  kl 6   ke 7  kt 8  kbr 9  wffMMJ2t 12  tal 122  tex 123  teu 125 This theorem was proved from axioms:  ax-cb1 29  ax-weq 40  ax-refl 42  ax-wc 49  ax-wv 63  ax-wl 65  ax-wov 71  ax-eqtypri 80 This theorem depends on definitions:  df-al 126  df-an 128  df-im 129  df-ex 131  df-eu 133 This theorem is referenced by:  euval  144
 Copyright terms: Public domain W3C validator