HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  weu Unicode version

Theorem weu 141
Description: There exists unique type. (Contributed by Mario Carneiro, 8-Oct-2014.)
Assertion
Ref Expression
weu |- E!:((al -> *) -> *)

Proof of Theorem weu
Dummy variables p x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wex 139 . . . 4 |- E.:((al -> *) -> *)
2 wal 134 . . . . . 6 |- A.:((al -> *) -> *)
3 wv 64 . . . . . . . . 9 |- p:(al -> *):(al -> *)
4 wv 64 . . . . . . . . 9 |- x:al:al
53, 4wc 50 . . . . . . . 8 |- (p:(al -> *)x:al):*
6 wv 64 . . . . . . . . 9 |- y:al:al
74, 6weqi 76 . . . . . . . 8 |- [x:al = y:al]:*
85, 7weqi 76 . . . . . . 7 |- [(p:(al -> *)x:al) = [x:al = y:al]]:*
98wl 66 . . . . . 6 |- \x:al [(p:(al -> *)x:al) = [x:al = y:al]]:(al -> *)
102, 9wc 50 . . . . 5 |- (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]):*
1110wl 66 . . . 4 |- \y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]):(al -> *)
121, 11wc 50 . . 3 |- (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]])):*
1312wl 66 . 2 |- \p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]])):((al -> *) -> *)
14 df-eu 133 . 2 |- T. |= [E! = \p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]))]
1513, 14eqtypri 81 1 |- E!:((al -> *) -> *)
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9  wffMMJ2t 12  A.tal 122  E.tex 123  E!teu 125
This theorem was proved from axioms:  ax-cb1 29  ax-weq 40  ax-refl 42  ax-wc 49  ax-wv 63  ax-wl 65  ax-wov 71  ax-eqtypri 80
This theorem depends on definitions:  df-al 126  df-an 128  df-im 129  df-ex 131  df-eu 133
This theorem is referenced by:  euval  144
  Copyright terms: Public domain W3C validator