Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > weu | Unicode version |
Description: There exists unique type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
weu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wex 139 | . . . 4 | |
2 | wal 134 | . . . . . 6 | |
3 | wv 64 | . . . . . . . . 9 | |
4 | wv 64 | . . . . . . . . 9 | |
5 | 3, 4 | wc 50 | . . . . . . . 8 |
6 | wv 64 | . . . . . . . . 9 | |
7 | 4, 6 | weqi 76 | . . . . . . . 8 |
8 | 5, 7 | weqi 76 | . . . . . . 7 |
9 | 8 | wl 66 | . . . . . 6 |
10 | 2, 9 | wc 50 | . . . . 5 |
11 | 10 | wl 66 | . . . 4 |
12 | 1, 11 | wc 50 | . . 3 |
13 | 12 | wl 66 | . 2 |
14 | df-eu 133 | . 2 | |
15 | 13, 14 | eqtypri 81 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2t 12 tal 122 tex 123 teu 125 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-al 126 df-an 128 df-im 129 df-ex 131 df-eu 133 |
This theorem is referenced by: euval 144 |
Copyright terms: Public domain | W3C validator |