Higher-Order Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HOLE Home  >  Th. List  >  wor Unicode version

Theorem wor 140
 Description: Disjunction type. (Contributed by Mario Carneiro, 8-Oct-2014.)
Assertion
Ref Expression
wor

Proof of Theorem wor
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wal 134 . . . . 5
2 wim 137 . . . . . . 7
3 wv 64 . . . . . . . 8
4 wv 64 . . . . . . . 8
52, 3, 4wov 72 . . . . . . 7
6 wv 64 . . . . . . . . 9
72, 6, 4wov 72 . . . . . . . 8
82, 7, 4wov 72 . . . . . . 7
92, 5, 8wov 72 . . . . . 6
109wl 66 . . . . 5
111, 10wc 50 . . . 4
1211wl 66 . . 3
1312wl 66 . 2
14 df-or 132 . 2
1513, 14eqtypri 81 1
 Colors of variables: type var term Syntax hints:  tv 1   ht 2  hb 3  kc 5  kl 6  kt 8  kbr 9  wffMMJ2t 12   tim 121  tal 122   tor 124 This theorem was proved from axioms:  ax-cb1 29  ax-weq 40  ax-refl 42  ax-wc 49  ax-wv 63  ax-wl 65  ax-wov 71  ax-eqtypri 80 This theorem depends on definitions:  df-al 126  df-an 128  df-im 129  df-or 132 This theorem is referenced by:  orval  147  olc  164  orc  165  exmid  199
 Copyright terms: Public domain W3C validator