Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > wor | Unicode version |
Description: Disjunction type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
wor |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wal 134 | . . . . 5 | |
2 | wim 137 | . . . . . . 7 | |
3 | wv 64 | . . . . . . . 8 | |
4 | wv 64 | . . . . . . . 8 | |
5 | 2, 3, 4 | wov 72 | . . . . . . 7 |
6 | wv 64 | . . . . . . . . 9 | |
7 | 2, 6, 4 | wov 72 | . . . . . . . 8 |
8 | 2, 7, 4 | wov 72 | . . . . . . 7 |
9 | 2, 5, 8 | wov 72 | . . . . . 6 |
10 | 9 | wl 66 | . . . . 5 |
11 | 1, 10 | wc 50 | . . . 4 |
12 | 11 | wl 66 | . . 3 |
13 | 12 | wl 66 | . 2 |
14 | df-or 132 | . 2 | |
15 | 13, 14 | eqtypri 81 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 kt 8 kbr 9 wffMMJ2t 12 tim 121 tal 122 tor 124 |
This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
This theorem depends on definitions: df-al 126 df-an 128 df-im 129 df-or 132 |
This theorem is referenced by: orval 147 olc 164 orc 165 exmid 199 |
Copyright terms: Public domain | W3C validator |