HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  euval Unicode version

Theorem euval 144
Description: Value of the 'exists unique' predicate. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypothesis
Ref Expression
alval.1 |- F:(al -> *)
Assertion
Ref Expression
euval |- T. |= [(E!F) = (E.\y:al (A.\x:al [(Fx:al) = [x:al = y:al]]))]
Distinct variable groups:   x,y,al   y,F,x

Proof of Theorem euval
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 weu 141 . . 3 |- E!:((al -> *) -> *)
2 alval.1 . . 3 |- F:(al -> *)
31, 2wc 50 . 2 |- (E!F):*
4 df-eu 133 . . 3 |- T. |= [E! = \p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]))]
51, 2, 4ceq1 89 . 2 |- T. |= [(E!F) = (\p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]))F)]
6 wex 139 . . . 4 |- E.:((al -> *) -> *)
7 wal 134 . . . . . 6 |- A.:((al -> *) -> *)
8 wv 64 . . . . . . . . 9 |- p:(al -> *):(al -> *)
9 wv 64 . . . . . . . . 9 |- x:al:al
108, 9wc 50 . . . . . . . 8 |- (p:(al -> *)x:al):*
11 wv 64 . . . . . . . . 9 |- y:al:al
129, 11weqi 76 . . . . . . . 8 |- [x:al = y:al]:*
1310, 12weqi 76 . . . . . . 7 |- [(p:(al -> *)x:al) = [x:al = y:al]]:*
1413wl 66 . . . . . 6 |- \x:al [(p:(al -> *)x:al) = [x:al = y:al]]:(al -> *)
157, 14wc 50 . . . . 5 |- (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]):*
1615wl 66 . . . 4 |- \y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]):(al -> *)
176, 16wc 50 . . 3 |- (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]])):*
18 weq 41 . . . . . . . 8 |- = :(* -> (* -> *))
198, 2weqi 76 . . . . . . . . . 10 |- [p:(al -> *) = F]:*
2019id 25 . . . . . . . . 9 |- [p:(al -> *) = F] |= [p:(al -> *) = F]
218, 9, 20ceq1 89 . . . . . . . 8 |- [p:(al -> *) = F] |= [(p:(al -> *)x:al) = (Fx:al)]
2218, 10, 12, 21oveq1 99 . . . . . . 7 |- [p:(al -> *) = F] |= [[(p:(al -> *)x:al) = [x:al = y:al]] = [(Fx:al) = [x:al = y:al]]]
2313, 22leq 91 . . . . . 6 |- [p:(al -> *) = F] |= [\x:al [(p:(al -> *)x:al) = [x:al = y:al]] = \x:al [(Fx:al) = [x:al = y:al]]]
247, 14, 23ceq2 90 . . . . 5 |- [p:(al -> *) = F] |= [(A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]) = (A.\x:al [(Fx:al) = [x:al = y:al]])]
2515, 24leq 91 . . . 4 |- [p:(al -> *) = F] |= [\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]) = \y:al (A.\x:al [(Fx:al) = [x:al = y:al]])]
266, 16, 25ceq2 90 . . 3 |- [p:(al -> *) = F] |= [(E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]])) = (E.\y:al (A.\x:al [(Fx:al) = [x:al = y:al]]))]
2717, 2, 26cl 116 . 2 |- T. |= [(\p:(al -> *) (E.\y:al (A.\x:al [(p:(al -> *)x:al) = [x:al = y:al]]))F) = (E.\y:al (A.\x:al [(Fx:al) = [x:al = y:al]]))]
283, 5, 27eqtri 95 1 |- T. |= [(E!F) = (E.\y:al (A.\x:al [(Fx:al) = [x:al = y:al]]))]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12  A.tal 122  E.tex 123  E!teu 125
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131  df-eu 133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator