| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > wex | Unicode version | ||
| Description: There exists type. (Contributed by Mario Carneiro, 8-Oct-2014.) |
| Ref | Expression |
|---|---|
| wex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wal 134 |
. . . 4
| |
| 2 | wim 137 |
. . . . . 6
| |
| 3 | wal 134 |
. . . . . . 7
| |
| 4 | wv 64 |
. . . . . . . . . 10
| |
| 5 | wv 64 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | wc 50 |
. . . . . . . . 9
|
| 7 | wv 64 |
. . . . . . . . 9
| |
| 8 | 2, 6, 7 | wov 72 |
. . . . . . . 8
|
| 9 | 8 | wl 66 |
. . . . . . 7
|
| 10 | 3, 9 | wc 50 |
. . . . . 6
|
| 11 | 2, 10, 7 | wov 72 |
. . . . 5
|
| 12 | 11 | wl 66 |
. . . 4
|
| 13 | 1, 12 | wc 50 |
. . 3
|
| 14 | 13 | wl 66 |
. 2
|
| 15 | df-ex 131 |
. 2
| |
| 16 | 14, 15 | eqtypri 81 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-cb1 29 ax-weq 40 ax-refl 42 ax-wc 49 ax-wv 63 ax-wl 65 ax-wov 71 ax-eqtypri 80 |
| This theorem depends on definitions: df-al 126 df-an 128 df-im 129 df-ex 131 |
| This theorem is referenced by: weu 141 exval 143 euval 144 exlimdv2 166 exlimd 183 eximdv 185 alnex 186 exnal1 187 exnal 201 ax9 212 axrep 220 axun 222 |
| Copyright terms: Public domain | W3C validator |