ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.16 Unicode version

Theorem 19.16 1492
Description: Theorem 19.16 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
Hypothesis
Ref Expression
19.16.1  |-  F/ x ph
Assertion
Ref Expression
19.16  |-  ( A. x ( ph  <->  ps )  ->  ( ph  <->  A. x ps ) )

Proof of Theorem 19.16
StepHypRef Expression
1 19.16.1 . . 3  |-  F/ x ph
2119.3 1491 . 2  |-  ( A. x ph  <->  ph )
3 albi 1402 . 2  |-  ( A. x ( ph  <->  ps )  ->  ( A. x ph  <->  A. x ps ) )
42, 3syl5bbr 192 1  |-  ( A. x ( ph  <->  ps )  ->  ( ph  <->  A. x ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   A.wal 1287   F/wnf 1394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-4 1445
This theorem depends on definitions:  df-bi 115  df-nf 1395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator